Numdifftools Documentation
Release 0.9.40

Per A. Brodtkorb, John D’Errico

Jun 02, 2021

CONTENTS:

Introduction 3
1.1~ What is numdifftools? 3
1.2 How the documentation is organized Lo 0. 3
Tutorials 5
2.1 Install guide 5
2.1.1 Install Python e 5
2.1.2 Dependencies e e e e e e 6
2.1.3 Install numdifftools 6
2.1.4 Verifyinginstallation e 6
2,15 That'sit!. . . . oL e e 6
22 Gettingstarted L. e e 6
22.1 Thederivative L. e e e e 6
222 Gradient and Hessian estimation 8
23 Conclusion 11
24 Whattoread next. Ll e e e e e 11
2.4.1 Finding documentation Lol e e e e 11
2.4.2 How the documentation is organized oL 11
24.3 Howdocumentationisupdated oL 12
How-to guides 15
3.1 How to create virtual environments for python withconda 15
3.1.1 Check conda is installed and in your PATH. 15
3.1.2 Checkcondaisuptodate. i e e e 15
3.1.3 Create a virtual environment for your project. 16
3.1.4 Activate your virtual environment. oL Lo 16
3.1.5 Install additional Python packages to a virtual environment. 16
3.1.6 Deactivate your virtual environment.o e e 16
3.1.7 Delete a no longer needed virtual environment. 16
3.1.8 Relatedinfo.. 17
3.2 Contributing L. e e e e e e e e 17
3.2.1 Contributeapatch. e e 17
Topics guides 19
4.1 Introduction derivative estimation oo 19
4.2 Numerical differentiation of a general function of one variable 19
4.3 Unequally spaced finite differencerules o oo 20
4.4 Odd and even transformations of afunction o oL oo 20
4.5 Complex step derivative o e e e e e e e e e e e 21
4.6 Highorderderivative L e 22
4.7 Richardson extrapolation methodology applied to derivative estimation 22
4.8 Multiple term Richardson extrapolants oL 23
4.9 Uncertainty estimates for Derivative e 24
Reference 27

5.1 Numdifftools summary e e e e
5.1.1 numdifftools.coremodule
5.1.2 0 Step @eneratorso .. e e e e e e e e e e e e e e e e e e e
5.1.3 numdifftools.extrapolation module oL Lo oL
5.1.4 numdifftools.limits module
5.1.5 numdifftools.multicomplex module Lo oL
5.1.6 numdifftools.nd_algopy module e
5.1.7 numdifftools.nd_scipymodule
5.1.8 numdifftools.nd_statsmodels module
5.2 Numdifftools package details
5.2.1 numdifftools.tests package Lo
5.2.2 numdifftools.coremodule
5.2.3 numdifftools.extrapolation module L Lo L
5.2.4 numdifftools.finite_difference module
5.2.5 numdifftools.fornbergmodule L oo o o
5.2.6 numdifftools.limits module
5.2.7 numdifftools.multicomplex module L Lo
5.2.8 numdifftools.nd_algopy module o e
5.2.9 numdifftools.nd_scipymodule L L L
5.2.10 numdifftools.nd_statsmodels module
5.2.11 numdifftools.step_generatorsmodule L. oL
A Changelog
A.1 Version 0.9.40 Jun 2, 2021 e e e
A.2 Version 0.9.39 Jun 10,2019 e
A3 Version 0.9.38 Jun 10, 2019 e e
A4 Version 0.9.20,Jan 11,2017 o 0 0 e e e e e e e
A5 Version 0.9.19,Jan 11,2017 o 0 0 e e e e e
A.6 Version 0.9.18,Jan 11,2017 e e e e e e e e e e e
A7 Version 0.9.17,Sep 8,2016 e e e e
A.8 Version 0.9.15,May 10,2016 e
A.9 Version 0.9.14, November 10, 2015 e
A.10 Version 0.9.13, October 30, 2015 e e
A1l Version 0.9.12, August 28,2015 L e
A.12 Version 0.9.11, August 27,2015 e e e
A.13 Version 0.9.10, August 26,2015 L
A.14 Version 0.9.4, August 26,2015 L
A.15 Version 0.9.3, August 23,2015 oL e e e e e e
A.16 Version 0.9.2, August 20,2015 L e e
A.17 Version 0.9.1, August 20,2015 L L e e e
A.18 Version 0.7.7, December 18,2014 e
A.19 Version 0.7.3, December 17,2014 o . e e e
A.20 Version 0.6.0, February 8, 2014 e e e e e
A.21 Version 0.5.0, January 10,2014 e e e e e
A22 Version 0.4.0,May 5,2012. e
A.23 Version 0.3.5, May 19,2011 o e
A.24 Version 0.3.4, Feb 24,2011 o e e
A.25 Version 0.3.1, May 20,2009 e e e e e e e e e
B Contributors
C License
D Acknowledgments
Bibliography
Python Module Index

147

149

151

153

Index 155

Numdifftools Documentation, Release 0.9.40

This is the documentation of Numdifftools version 0.9 released Jun 02, 2021.
Bleeding edge available at: https://github.com/pbrod/numdifftools.
Official releases are available at: http://pypi.python.org/pypi/Numdifttools.

CONTENTS: 1

https://github.com/pbrod/numdifftools
http://pypi.python.org/pypi/Numdifftools

Numdifftools Documentation, Release 0.9.40

2 CONTENTS:

CHAPTER
ONE

INTRODUCTION

1.1 What is numdifftools?

Numdifftools is a suite of tools written in _Python’ to solve automatic numerical differentiation problems in one
or more variables. Finite differences are used in an adaptive manner, coupled with a Richardson extrapolation
methodology to provide a maximally accurate result. The user can configure many options like; changing the
order of the method or the extrapolation, even allowing the user to specify whether complex-step, central, forward
or backward differences are used.

The methods provided are:
* Derivative: Compute the derivatives of order 1 through 10 on any scalar function.
* directionaldiff: Compute directional derivative of a function of n variables
* Gradient: Compute the gradient vector of a scalar function of one or more variables.
* Jacobian: Compute the Jacobian matrix of a vector valued function of one or more variables.

e Hessian: Compute the Hessian matrix of all 2nd partial derivatives of a scalar function of one or more
variables.

* Hessdiag: Compute only the diagonal elements of the Hessian matrix
All of these methods also produce error estimates on the result.

Numdifftools also provide an easy to use interface to derivatives calculated with in _AlgoPy®. Algopy stands for
Algorithmic Differentiation in Python. The purpose of AlgoPy is the evaluation of higher-order derivatives in
the forward and reverse mode of Algorithmic Differentiation (AD) of functions that are implemented as Python
programs.

1.2 How the documentation is organized

Numdifftools has a lot of documentation. A high-level overview of how it’s organized will help you know where
to look for certain things:

* Tutorials (page 5) take you by the hand through a series of steps to load a CDF container and explore its
contents or to construct a new dataset and validate it. Start here if you’re new to numdifftools.

* Topic guides (page 19) discuss key topics and concepts at a fairly high level and provide useful background
information and explanation.

* Reference guides (page 27) contain technical reference for APIs and other aspects of numdifftools’ machinery.
They describe how it works and how to use it but assume that you have a basic understanding of key concepts.

* How-to guides (page 15) are recipes. They guide you through the steps involved in addressing key problems
and use-cases. They are more advanced than tutorials and assume some knowledge of how numdifttools
works.

5 http://www.python.org/
6 https://pythonhosted.org/algopy/

http://www.python.org/
https://pythonhosted.org/algopy/

Numdifftools Documentation, Release 0.9.40

4 Chapter 1. Introduction

CHAPTER
TWO

TUTORIALS

The pages in this section of the documentation are aimed at the newcomer to numdifftools. They’re designed to help
you get started quickly, and show how easy it is to work with numdifftools as a developer who wants to customise
it and get it working according to their own requirements.

These tutorials take you step-by-step through some key aspects of this work. They’re not intended to explain the
topics in depth (page 19), or provide reference material (page 27), but they will leave you with a good idea of what
it’s possible to achieve in just a few steps, and how to go about it.

Once you’re familiar with the basics presented in these tutorials, you’ll find the more in-depth coverage of the same
topics in the How-fo (page 15) section.

The tutorials follow a logical progression, starting from installation of numdifftools and the creation of a brand
new project, and build on each other, so it’s recommended to work through them in the order presented here.

2.1 Install guide

Before you can use numdifftools, you’ll need to get it installed. This guide will guide you through a simple instal-
lation that’ll work while you walk through the introduction.

2.1.1 Install Python

Being a Python library, numdifftools requires Python. Preferably you ned version 3.4 or newer, but you get the
latest version of Python at https://www.python.org/downloads/.

You can verify that Python is installed by typing python from the command shell; you should see something like:

Python 3.6.3 (64-bit)| (default, Oct 15 2017, 03:27:45)

[MSC v.1900 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more information.
>>>

pip is the Python installer. Make sure yours is up-to-date, as earlier versions can be less reliable:

$ pip install --upgrade pip

https://www.python.org/downloads/

Numdifftools Documentation, Release 0.9.40

2.1.2 Dependencies

Numdifttools requires numpy 1.9 or newer, scipy 0.8 or newer, and Python 2.7 or 3.3 or newer. This tutorial assumes
you are using Python 3. Optionally you may also want to install Algopy 0.4 or newer and statsmodels 0.6 or newer
in order to be able to use the easy to use interfaces to their derivative functions.

2.1.3 Install numdifftools

To install numdifftools simply type in the ‘command’ shell:

$ pip install numdifftools

to get the lastest stable version. Using pip also has the advantage that all requirements are automatically installed.

2.1.4 Verifying installation
To verify that numdifftools can be seen by Python, type python from your shell. Then at the Python prompt, try
to import numdifftools:

>>> import numdifftools as nd
>>> print(nd.__version__)
0.9.40

To test if the toolbox is working correctly paste the following in an interactive python prompt:

nd.test('--doctest-module')

If the result show no errors, you now have installed a fully functional toolbox. Congratulations!

2.1.5 That’s it!

That’s it — you can now move onto the getting started tutorial (page 6)

2.2 Getting started

2.2.1 The derivative

How does numdifftools.Derivative work in action? A simple nonlinear function with a well known derivative is
e”. At x = 0, the derivative should be 1.

>>> import numpy as np

>>> from numpy import exp

>>> import numdifftools as nd

>>> f = nd.Derivative(exp, full_output=True)
>>> val, info = £(0)

>>> np.allclose(val, 1)

True

>>> np.allclose(info.error_estimate, 5.28466160e-14)
True

A second simple example comes from trig functions. The first four derivatives of the sine function, evaluated at
x = 0, should be respectively [cos(0), —sin(0), —cos(0), sin(0)], or [1,0, —1,0].

6 Chapter 2. Tutorials

Numdifftools Documentation, Release 0.9.40

>>> from numpy import sin

>>> import numdifftools as nd
>>> df = nd.Derivative(sin, n=1)
>>> np.allclose(df(®), 1.)

True

>>> ddf = nd.Derivative(sin, n=2)
>>> np.allclose(ddf(®), 0.)
True

>>> dddf = nd.Derivative(sin, n=3)
>>> np.allclose(dddf(0), -1.)
True

>>> ddddf = nd.Derivative(sin, n=4)
>>> np.allclose(ddddf(0), 0.)
True

Visualize high order derivatives of the tanh function

>>> import numpy as np

>>> import matplotlib.pyplot as plt

>>> x = np.linspace(-2, 2, 100)

>>> for i in range(10):
df = nd.Derivative(np.tanh, n=i)
y = df(x)
h = plt.plot(x, y/np.abs(y).max())

plt.show()

2.2. Getting started

Numdifftools Documentation, Release 0.9.40

N

2.2.2 Gradient and Hessian estimation

Estimation of the gradient vector (numdifftools.Gradient) of a function of multiple variables is a simple task, re-
quiring merely repeated calls to numdifftools.Derivative. Likewise, the diagonal elements of the hessian matrix
are merely pure second partial derivatives of a function. numdifftools.Hessdiag accomplishes this task, again call-
ing numdifftools.Derivative multiple times. Efficient computation of the off-diagonal (mixed partial derivative)
elements of the Hessian matrix uses a scheme much like that of numdifftools.Derivative, then Richardson extrap-
olation is used to improve a set of second order finite difference estimates of those mixed partials.

7 https://github.com/pbrod/numdifftools/blob/master/examples/fun.py

8 Chapter 2. Tutorials

https://github.com/pbrod/numdifftools/blob/master/examples/fun.py

Numdifftools Documentation, Release 0.9.40

2.2.2.1 Multivariate calculus examples
Typical usage of the gradient and Hessian might be in optimization problems, where one might compare an ana-

lytically derived gradient for correctness, or use the Hessian matrix to compute confidence interval estimates on
parameters in a maximum likelihood estimation.

2.2.2.2 Gradients and Hessians

>>> import numpy as np
>>> def rosen(x): return (1-x[0])**2 + 105.*(x[1]-x[0]**2)**2

Gradient of the Rosenbrock function at [1,1], the global minimizer

>>> grad = nd.Gradient(rosen) ([1, 1])

The gradient should be zero (within floating point noise)

>>> np.allclose(grad, 0)
True

The Hessian matrix at the minimizer should be positive definite

>>> H = nd.Hessian(rosen) ([1, 1])

The eigenvalues of H should be positive

>>> 1i, U = np.linalg.eig(H)
>>> [val>0 for val in 1i]
[True, True]

Gradient estimation of a function of 5 variables

>>> f = lambda x: np.sum(x**2)

>>> grad = nd.Gradient(f) (np.r_[1, 2, 3, 4, 5])

>>> np.allclose(grad, [2., 4., 6., 8., 10.1)
True

Simple Hessian matrix of a problem with 3 independent variables

>>> f = lambda x: x[0] + x[1]**2 + x[2]**3
>>> H = nd.Hessian(£) ([1, 2, 31)

>>> np.allclose(H, np.diag([0, 2, 18]))
True

A semi-definite Hessian matrix

>>> H = nd.Hessian(lambda xy: np.cos(xy[0] - xy[11)) ([0, 0])

one of these eigenvalues will be zero (approximately)

>>> [abs(val) < le-12 for val in np.linalg.eig(H)[0]]
[True, False]

2.2. Getting started 9

Numdifftools Documentation, Release 0.9.40

2.2.2.3 Directional derivatives

The directional derivative will be the dot product of the gradient with the (unit normalized) vector. This is of
course possible to do with numdifftools and you could do it like this for the Rosenbrock function at the solution,
x0=1[1,1]:

>>> v = np.r_[1, 2]/np.sqrt(5)
>>> x0 = [1, 1]
>>> directional_diff = np.dot(nd.Gradient(rosen) (x0), v)

This should be zero.

>>> np.allclose(directional_diff, 0)
True

Ok, its a trivial test case, but it easy to compute the directional derivative at other locations:

>>> v2 = np.r_[1, -1]/np.sqrt(2)

>>> x2 [2, 3]

>>> directionaldiff = np.dot(nd.Gradient (rosen) (x2), v2)
>>> np.allclose(directionaldiff, 743.87633380824832)
True

There is a convenience function nd.directionaldi f f that also takes care of the direction normalization:

>>> v = [1, -1]

>>> x0 = [2, 3]

>>> directional_diff = nd.directionaldiff(rosen, x0, v)
>>> np.allclose(directional_diff, 743.87633380824832)
True

2.2.2.4 Jacobian matrix

Jacobian matrix of a scalar function is just the gradient

>>> jac = nd.Jacobian(rosen) ([2, 3])
>>> grad = nd.Gradient(rosen) ([2, 31)
>>> np.allclose(jac, grad)

True

Jacobian matrix of a linear system will reduce to the design matrix

>>> A = np.random.rand(5, 3)

>>> b = np.random.rand(5)

>>> fun = lambda x: np.dot(x, A.T) - b
>>> X = np.random.rand(3)

>>> jac = nd.Jacobian(fun) (x)

This should be essentially zero at any location x

>>> np.allclose(jac - A, 0)
True

The jacobian matrix of a nonlinear transformation of variables evaluated at some arbitrary location [-2, -3]

>>> fun = lambda xy: np.r_[xy[0]**2, np.cos(xy[0] - xy[1])]
>>> jac = nd.Jacobian(fun)([-2, -3])
>>> np.allclose(jac, [[-4., ©0.],

(continues on next page)

10 Chapter 2. Tutorials

Numdifftools Documentation, Release 0.9.40

(continued from previous page)

e [-0.84147098, 0.8414709811)
True

2.3 Conclusion

numdifftools.Derivative is an a adaptive scheme that can compute the derivative of arbitrary (well behaved) func-
tions. It is reasonably fast as an adaptive method. Many options have been provided for the user who wishes the
ultimate amount of control over the estimation.

2.4 What to read next

So you’ve read all the introductory material (page 5) and have decided you’d like to keep using numdifftools. We’ve
only just scratched the surface with this intro.

So what’s next?

Well, we’ve always been big fans of learning by doing. At this point you should know enough to start a project of
your own and start fooling around. As you need to learn new tricks, come back to the documentation.

We’ve put a lot of effort into making numdifftools’s documentation useful, easy to read and as complete as possible.
The rest of this document explains more about how the documentation works so that you can get the most out of it.

2.4.1 Finding documentation
Numdifftools got a lot of documentation, so finding what you need can sometimes be tricky. A few good places to
start are the search and the genindex.

Or you can just browse around!

2.4.2 How the documentation is organized

Numdifftools main documentation is broken up into “chunks” designed to fill different needs:

* The introductory material (page 5) is designed for people new to numdifftools. It doesn’t cover anything in
depth, but instead gives a hands on overview of how to use numdifftools.

» The ropic guides (page 19), on the other hand, dive deep into individual parts of numdifftools from a theo-
retical perspective.

* We’ve written a set of how-fo guides (page 15) that answer common “How do I ...?” questions.

* The guides and how-to’s don’t cover every single class, function, and method available in numdifftools — that
would be overwhelming when you’re trying to learn. Instead, details about individual classes, functions,
methods, and modules are kept in the reference (page 27). This is where you’ll turn to find the details of a
particular function or whatever you need.

2.3. Conclusion 11

Numdifftools Documentation, Release 0.9.40

2.4.3 How documentation is updated
Just as the numdifftools code base is developed and improved on a daily basis, our documentation is consistently
improving. We improve documentation for several reasons:

» To make content fixes, such as grammar/typo corrections.

* To add information and/or examples to existing sections that need to be expanded.

* To document numdifftools features that aren’t yet documented. (The list of such features is shrinking but
exists nonetheless.)

* To add documentation for new features as new features get added, or as numdifftools APIs or behaviors
change.

2.4.3.1 In plain text

For offline reading, or just for convenience, you can read the numdifftools documentation in plain text.

If you’re using an official release of numdifftools, the zipped package (tarball) of the code includes a docs/ direc-
tory, which contains all the documentation for that release.

If you’re using the development version of numdifftools (aka the master branch), the docs/ directory contains all
of the documentation. You can update your Git checkout to get the latest changes.

One low-tech way of taking advantage of the text documentation is by using the Unix grep utility to search for a
phrase in all of the documentation. For example, this will show you each mention of the phrase “max_length” in
any numdifftools document:

$ grep -r max_length /path/to/numdifftools/docs/

2.4.3.2 As HTML, locally

You can get a local copy of the HTML documentation following a few easy steps:

+ numdifftools’s documentation uses a system called Sphinx® to convert from plain text to HTML. You’ll need
to install Sphinx by either downloading and installing the package from the Sphinx website, or with pip:

$ pip install Sphinx

* Then, just use the included Makefile to turn the documentation into HTML:

$ cd path/to/numdifftools/docs
$ make html

You’ll need GNU Make? installed for this.

If you’re on Windows you can alternatively use the included batch file:

$ cd path\to\numdifftools\docs
$ make.bat html

e The HTML documentation will be placed in docs/_build/html.

8 http://sphinx-doc.org/
9 https://www.gnu.org/software/make/

12 Chapter 2. Tutorials

http://sphinx-doc.org/
https://www.gnu.org/software/make/

Numdifftools Documentation, Release 0.9.40

2.4.3.3 Using pydoc

The pydoc module automatically generates documentation from Python modules. The documentation can be pre-
sented as pages of text on the console, served to a Web browser, or saved to HTML files.

For modules, classes, functions and methods, the displayed documentation is derived from the docstring (i.e. the
__doc___ attribute) of the object, and recursively of its documentable members. If there is no docstring, pydoc tries
to obtain a description from the block of comment lines just above the definition of the class, function or method
in the source file, or at the top of the module (see inspect.getcomments()).

The built-in function help() invokes the online help system in the interactive interpreter, which uses pydoc to
generate its documentation as text on the console. The same text documentation can also be viewed from outside
the Python interpreter by running pydoc as a script at the operating system’s command prompt. For example,
running

$ pydoc numdifftools

at a shell prompt will display documentation on the numdifftools module, in a style similar to the manual pages
shown by the Unix man command. The argument to pydoc can be the name of a function, module, or package,
or a dotted reference to a class, method, or function within a module or module in a package. If the argument to
pydoc looks like a path (that is, it contains the path separator for your operating system, such as a slash in Unix),
and refers to an existing Python source file, then documentation is produced for that file.

You can also use pydoc to start an HTTP server on the local machine that will serve documentation to visiting Web
browsers. For example, running

$ pydoc -b

will start the server and additionally open a web browser to a module index page. Each served page has a navigation
bar at the top where you can Get help on an individual item, Search all modules with a keyword in their synopsis
line, and go to the Module index, Topics and Keywords pages. To quit the server just type

$ quit

See also:

Numdifftools is 100% Python'?, so if you’re new to Python'', you might want to start by getting an idea of what
the language is like. Below we have given some pointers to some resources you can use to get acquainted with the
language.

If you're new to programming entirely, you might want to start with this list of Python resources for non-

programmers'?

If you already know a few other languages and want to get up to speed with Python quickly, we recommend Dive
Into Python'3. If that’s not quite your style, there are many other books about Python'*.

10 https://python.org/

' https://python.org/

12 hitps://wiki.python.org/moin/BeginnersGuide/NonProgrammers
13 hitps://www.diveinto.org/python3/

14 https://wiki.python.org/moin/PythonBooks

2.4. What to read next 13

https://python.org/
https://python.org/
https://wiki.python.org/moin/BeginnersGuide/NonProgrammers
https://wiki.python.org/moin/BeginnersGuide/NonProgrammers
https://www.diveinto.org/python3/
https://www.diveinto.org/python3/
https://wiki.python.org/moin/PythonBooks

Numdifftools Documentation, Release 0.9.40

14 Chapter 2. Tutorials

CHAPTER
THREE

HOW-TO GUIDES

Here you’ll find short answers to “How do I....?7” types of questions. These how-to guides don’t cover topics in
depth — you’ll find that material in the 7opics guides (page 19) and the Reference (page 27). However, these guides
will help you quickly accomplish common tasks using the “best practices”.

3.1 How to create virtual environments for python with conda

In this section we will explain how to work with virtual environments using conda. A virtual environment is a
named, isolated, working copy of Python that maintains its own files, directories, and paths so that you can work
with specific versions of libraries or Python itself without affecting other Python projects. Virtual environments
make it easy to cleanly separate different projects and avoid problems with different dependencies and version
requirements across components. The conda command is the preferred interface for managing installations and
virtual environments with the Anaconda Python distribution. If you have a vanilla Python installation or other
Python distribution see virtualenv.

In the following we assume that the Anaconda Python distribution installed and accessible.

3.1.1 Check conda is installed and in your PATH.

Open a terminal client. Enter conda -V into the terminal command line and press enter. If conda is installed you
should see somehting like the following.

$ conda -V
conda 4.6.8

3.1.2 Check conda is up to date.

In the terminal client enter

conda update conda

Update any packages if necessary by typing y to proceed.

15

Numdifftools Documentation, Release 0.9.40

3.1.3 Create a virtual environment for your project.

In the terminal client enter the following where yourenvname is the name you want to call your environment, and
replace x.x with the Python version you wish to use. (To see a list of available python versions first, type conda
search "Apython$" and press enter.)

conda create -n yourenvname python=x.x anaconda

Press y to proceed. This will install the Python version and all the associated anaconda packaged libraries at
path_to_your_anaconda_location/anaconda/envs/yourenvname

3.1.4 Activate your virtual environment.

To activate or switch into your virtual environment, simply type the following where yourenvname is the name you
gave to your environement at creation.

conda activate yourenvname

Activating a conda environment modifies the PATH and shell variables to point to the specific isolated Python
set-up you created. The command prompt will change to indicate which conda environemnt you are currently in
by prepending (yourenvname). To see a list of all your environments, use the command conda info -e.

3.1.5 Install additional Python packages to a virtual environment.

To install additional packages only to your virtual environment, enter the following command where yourenvname
is the name of your environemnt, and [package] is the name of the package you wish to install. Failure to specify
-n yourenvname will install the package to the root Python installation.

conda install -n yourenvname [package]

3.1.6 Deactivate your virtual environment.

To end a session in the current environment, enter the following. There is no need to specify the envname - which
ever is currently active will be deactivated, and the PATH and shell variables will be returned to normal.

conda deactivate

3.1.7 Delete a no longer needed virtual environment.

To delete a conda environment, enter the following, where yourenvname is the name of the environment you wish
to delete.

conda remove -n yourenvname -all

16 Chapter 3. How-to guides

Numdifftools Documentation, Release 0.9.40

3.1.8 Related info.

The offical conda documentation can be found here: https://conda.io/projects/conda/en/latest/user-guide/overview.
html https://conda.io/projects/conda/en/latest/user- guide/getting-started.html.

3.2 Contributing

3.2.1 Contribute a patch

3.2. Contributing 17

https://conda.io/projects/conda/en/latest/user-guide/overview.html
https://conda.io/projects/conda/en/latest/user-guide/overview.html
https://conda.io/projects/conda/en/latest/user-guide/getting-started.html

Numdifftools Documentation, Release 0.9.40

18 Chapter 3. How-to guides

CHAPTER
FOUR

TOPICS GUIDES

This section explains and analyses some key concepts in numdifftools. It’s less concerned with explaining how to
do things than with helping you understand how it works.

4.1 Introduction derivative estimation

The general problem of differentiation of a function typically pops up in three ways in Python.
* The symbolic derivative of a function.
» Compute numerical derivatives of a function defined only by a sequence of data points.
» Compute numerical derivatives of a analytically supplied function.

Clearly the first member of this list is the domain of the symbolic toolbox SymPy, or some set of symbolic tools.
Numerical differentiation of a function defined by data points can be achieved with the function gradient, or perhaps
by differentiation of a curve fit to the data, perhaps to an interpolating spline or a least squares spline fit.

The third class of differentiation problems is where Numdifftools is valuable. This document will describe the
methods used in Numdifftools and in particular the Derivative class.

4.2 Numerical differentiation of a general function of one variable

Surely you recall the traditional definition of a derivative, in terms of a limit.

£/(z) = lim w (4.1)

6—0

For small ¢, the limit approaches f’(z). This is a one-sided approximation for the derivative. For a fixed value
of 4, this is also known as a finite difference approximation (a forward difference.) Other approximations for the
derivative are also available. We will see the origin of these approximations in the Taylor series expansion of a
function f(z) around some point xg.

2 3
Pl +8) = flao) + 1" (w0) + % " (x0) + = 1O (o)

4.2)

0 () 8 (s) ° 6)
ﬂf ($O)+mf (330)+%f (o) + ...

Truncate the series in (4.2) to the first three terms, divide by J and rearrange yields the forward difference approx-
imation (4.1):

— 2
f/(ﬂﬁo) _ f(xo + 52 f(Z‘O) _ gf//(xo) _ %fm(xO) 4o (4.3)

19

Numdifftools Documentation, Release 0.9.40

When § is small, 62 and any higher powers are vanishingly small. So we tend to ignore those higher powers, and
describe the approximation in (4.3) as a first order approximation since the error in this approximation approaches
zero at the same rate as the first power of §.! The values of f”(xg) and f”’(x¢), while unknown to us, are fixed
constants as d varies.

Higher order approximations arise in the same fashion. The central difference (4.4) is a second order approximation.

f(zo —|—5)2_5f($0 -9) %f’"(a?o) . (4.4)

f(2o) =

4.3 Unequally spaced finite difference rules

While most finite difference rules used to differentiate a function will use equally spaced points, this fails to be
appropriate when one does not know the final spacing. Adaptive quadrature rules can succeed by subdividing each
sub-interval as necessary. But an adaptive differentiation scheme must work differently, since differentiation is a
point estimate. Derivative generates a sequence of sample points that follow a log spacing away from the point in
question, then it uses a single rule (generated on the fly) to estimate the desired derivative. Because the points are
log spaced, the same rule applies at any scale, with only a scale factor applied.

4.4 Odd and even transformations of a function

Returning to the Taylor series expansion of f(z) around some point o, an even function’ around x¢ must have
all the odd order derivatives vanish at zg. An odd function has all its even derivatives vanish from its expansion.
Consider the derived functions foqq () and feypen (2).

Foaa(z) = f(zo +) ; f(zo — 1) (4.5)
feven(x) _ f(xO + x) - 2f(2x0) + f(xO — 1') (4.6)

The Taylor series expansion of f,qq4(2) around zero has the useful property that we have killed off any even order
terms, but the odd order terms are identical to f(z), as expanded around .

7
FD (o) + ... (4.7)

53 5
5) =6t Zr® 2
foda(6) = 6 f'(wo) + 5 [(wo) + 120f (wo) + 5010
Likewise, the Taylor series expansion of fe,en () has no odd order terms or a constant term, but other even order
terms that are identical to f(z).

0% (o))) ° s) (4.8)
even 0) =— - - —_— .
Feven(8) = 51 (w0) + -7 D (o) + 25 £O (w0) + 5 O (o) +
The point of these transformations is we can rather simply generate a higher order approximation for any odd order
derivatives of f(z) by working with f,44(x). Even order derivatives of f(x) are similarly generated from feyer ().
For example, a second order approximation for f’(x¢) is trivially written in (4.9) as a function of ¢.

F(0:6) = fodg((s) B %f(g)(aro) (4.9)

We can do better rather simply, so why not? (4.10) shows a fourth order approximation for f’(x).

o 8f0dd(0) — foad(20) 0% 5 4.10
[(205 6) o + 30f (o) (4.10)
! We would normally write these additional terms using O() notation, where all that matters is that the error term is O(8) or perhaps O(§2),
but explicit understanding of these error terms will be useful in the Richardson extrapolation step later on.
2 Aneven function is one which expresses an even symmetry around a given point. An even symmetry has the property that f(z) = f(—x).
Likewise, an odd function expresses an odd symmetry, wherein f(z) = — f(—z).

20 Chapter 4. Topics guides

Numdifftools Documentation, Release 0.9.40

Again, the next non-zero term (4.11) in that expansion has a higher power of § on it, so we would normally ignore
it since the lowest order neglected term should dominate the behavior for small 4.

252f(7 (z0) (4.11)

Derivative uses similar approximations for all derivatives of f up to any order. Of course, it is not always possible
for evaluation of a function on both sides of a point, as central difference rules will require. In these cases, you
can specify forward or backward difference rules as appropriate. You can also specify to use the complex step
derivative, which we will outline in the next section.

4.5 Complex step derivative

The derivation of the complex-step derivative approximation is accomplished by replacing § in (4.2) with a complex
step th:

, . h? ih?) Wt
f(xo +1h) = f(zo) + ihf'(z0) — ?f (zo) — ?f (zo) + ﬂf (zo)+
(4.12)
ih® hS
20 () A {(9) _
120f (o) 720f (o)
Taking only the imaginary parts of both sides gives
h3 h’
S(f(wo +ih)) = hf'(wo) =~ P (wo) + 155/ (w0) — - “13)
Dividing with h and rearranging yields:
h2 4
I (wo) = S(f (w0 + ih)) /1 + = D wo) = 1561 (w0) + - (4.14)

Terms with order h? or higher can safely be ignored since the interval h can be chosen up to machine precision
without fear of rounding errors stemming from subtraction (since there are not any). Thus to within second-order
the complex-step derivative approximation is given by:

I (w0) = S(f(xo +ih))/h (4.15)

Next, consider replacing the step § in (4.8) with the complex step i2 h:

Foven(ih) = 2 0) — 2 10) = 0)¢

720
iR 10 (4.16)
_ p(®) W ru0) _
40320f (@0) + 3588007 (@)~
Similarly dividing with 2 /2 and taking only the imaginary components yields:
4 h8
F®(20) = S (2 feven(i2h))/h2 + 60f(6)($0) - mf(lo) (w0)... (4.17)

This approximation is still subject to difference errors, but the error associated with this approximation is propor-
tional to h*. Neglecting these higher order terms yields:

F@(@0) = 23 (feven(i2 h))/? = S(f(wo + 2 h) + f(wo — i2h)) /h? 4.18)

See [?] and [?] for more details. The complex-step derivative in numdifftools.Derivative has truncation error O (8 4)
for both odd and even order derivatives for n > 1. For n = 1 the truncation error is on the order of O(4?), so
truncation error can be eliminated by choosing steps to be very small. The first order complex-step derivative
avoids the problem of round-off error with small steps because there is no subtraction. However, the function to
differentiate needs to be analytic. This method does not work if it does not support complex numbers or involves
non-analytic functions such as e.g.: abs, max, min. For this reason the central method is the default method.

4.5. Complex step derivative 21

Numdifftools Documentation, Release 0.9.40

4.6 High order derivative

So how do we construct these higher order approximation formulas? Here we will deomonstrate the principle
by computing the 6’th order central approximation for the first-order derivative. In order to do so we simply set
foaa () equal to its 3-term Taylor expansion:

52i+1

2
foaa(8) =" mf@i“)(mo) (4.19)
i=0 ’

By inserting three different stepsizes into (4.19), eg 4, /2, 6/4, we get a set of linear equations:

1 % 7 6 f'(xo) fodd(9)
% 3% ﬁ O (o) | = | foaald/2) (4.20)
i omm wd 10°FO (x0) foaa(8/4)

The solution of these equations are simply:

(Sf/(l‘()) 1 % %8 % fodd(5)
FBfO(zo)| =< | -8 272 =512 | foaa(6/2) 4.21)
FFO(z)| 3512 5120 8192 | foaa(6/4)

The first row of (4.21) gives the coefficients for 6’th order approximation. Looking at at row two and three, we
see also that this gives the 6’th order approximation for the 3°rd and 5’th order derivatives as bonus. Thus this is
also a general method for obtaining high order differentiation rules. As previously noted these formulas have the
additional benefit of beeing applicable to any scale, with only a scale factor applied.

4.7 Richardson extrapolation methodology applied to derivative
estimation

Some individuals might suggest that the above set of approximations are entirely adequate for any sane person.
Can we do better?

Suppose we were to generate several different estimates of the approximation in (4.3) for different values of § at a
fixed z. Thus, choose a single J, estimate a corresponding resulting approximation to f’(zg), then do the same
for § /2. If we assume that the error drops off linearly as § — 0, then it is a simple matter to extrapolate this process
to a zero step size. Our lack of knowledge of f”/(zg) is irrelevant. All that matters is ¢ is small enough that the
linear term dominates so we can ignore the quadratic term, therefore the error is purely linear.

F(w0) = f(@o + 5()5 — f(zo) . gf//(xo) (4.22)

The linear extrapolant for this interval halving scheme as § — 0 is given by:

fo=2f52— I5 (4.23)

Since I've always been a big fan of convincing myself that something will work before I proceed too far, lets try
this out in Python. Consider the function e®. Generate a pair of approximations to f'(0), once at § of 0.1, and the
second approximation at 1/2 that value. Recall that d(d‘;) = e”, so at x = 0, the derivative should be exactly 1.

How well will we do?

>>> from numpy import exp, allclose
>>> f = exp

>>> dx = 0.1

>>> dfl = (£(dx) - £(0))/dx

>>> allclose(dfl, 1.05170918075648)
True

22 Chapter 4. Topics guides

Numdifftools Documentation, Release 0.9.40

>>> df2 = (£(dx/2) - £(0))/(dx/2)
>>> allclose(df2, 1.02542192752048)
True

>>> allclose(2*df2 - dfl, 0.999134674284488)
True

In fact, this worked very nicely, reducing the error to roughly 1 percent of our initial estimates. Should we be
surprised at this reduction? Not if we recall that last term in (4.3). We saw there that the next term in the expansion
was O(62). Since 6 was 0.1 in our experiment, that 1 percent number makes perfect sense.

The Richardson extrapolant in (4.23) assumed a linear process, with a specific reduction in § by a factor of 2.
Assume the two term (linear + quadratic) residual term in (4.3), evaluating our approximation there with a third
value of §. Again, assume the step size is cut in half again. The three term Richardson extrapolant is given by:

1 8
fo= §f§—2f<§/2+§fé/4 (4.24)

A quick test in Python yields much better results yet.

>>> from numpy import exp, allclose
>>> f = exp
>>> dx = 0.1

>>> dfl = (£(dx) - £(0))/dx
>>> allclose(dfl, 1.05170918075648)
True

>>> df2 = (£(dx/2) - £(0))/(dx/2)
>>> allclose(df2, 1.02542192752048)
True

>>> df3 = (£(dx/4) - £(0))/(dx/4)
>>> allclose(df3, 1.01260482097715)
True

>>> allclose(l./3*dfl - 2*df2 + 8./3*df3, 1.00000539448361)
True

Again, Derivative uses the appropriate multiple term Richardson extrapolants for all derivatives of f up to any
order’. This, combined with the use of high order approximations for the derivatives, allows the use of quite large
step sizes. See [?] and [?]. How to compute the multiple term Richardson extrapolants will be elaborated further
in the next section.

4.8 Multiple term Richardson extrapolants

We shall now indicate how we can calculate the multiple term Richardson extrapolant for f,q4(J)/d by rearranging
(4.19):

Joaa(0) — 0% i)
5 f'(@o) + Z mf (x0) (4.25)
This equation has the form
$(6) = L+ apd® + a16* + az8° + ... (4.26)

3 For practical purposes the maximum order of the derivative is between 4 and 10 depending on the function to differentiate and also the
method used in the approximation.

4.8. Multiple term Richardson extrapolants 23

Numdifftools Documentation, Release 0.9.40

where L stands for f(x) and ¢(¢) for the numerical differentiation formula f,q4(5)/0.

By neglecting higher order terms (a36%) and inserting three different stepsizes into (4.26), eg §,/2, § /4, we get a
set of linear equations:

1 1 1 L #(9)
1 % 5| [6%a0| = |6(6/2) 4.27)
1 4% 4% 54CL1 ¢(6/4)

The solution of these equations are simply:

I L1 200 o4 #(9)
52aq = —20 340 —320| |¢(6/2) (4.28)
5y 64 —320 256 | |p(6/4)

The first row of (4.28) gives the coefficients for Richardson extrapolation scheme.

4.9 Uncertainty estimates for Derivative

We can view the Richardson extrapolation step as a polynomial curve fit in the step size parameter §. Our desired
extrapolated value is seen as simply the constant term coefficient in that polynomial model. Remember though,
this polynomial model (see (4.10) and (4.11)) has only a few terms in it with known non-zero coefficients. That is,
we will expect a constant term ag, a term of the form a4 5%, and a third term a505.

A neat trick to compute the statistical uncertainty in the estimate of our desired derivative is to use statistical
methodology for that error estimate. While I do appreciate that there is nothing truly statistical or stochastic in this
estimate, the approach still works nicely, providing a very reasonable estimate in practice. A three term Richardson-
like extrapolant, then evaluated at four distinct values for J, will yield an estimate of the standard error of the
constant term, with one spare degree of freedom. The uncertainty is then derived by multiplying that standard
error by the appropriate percentile from the Students-t distribution.

>>> import scipy.stats as ss
>>> allclose(ss.t.cdf(12.7062047361747, 1), 0.975)
True

This critical level will yield a two-sided confidence interval of 95 percent.

These error estimates are also of value in a different sense. Since they are efficiently generated at all the different
scales, the particular spacing which yields the minimum predicted error is chosen as the best derivative estimate.
This has been shown to work consistently well. A spacing too large tends to have large errors of approximation due
to the finite difference schemes used. But a too small spacing is bad also, in that we see a significant amplification
of least significant fit errors in the approximation. A middle value generally seems to yield quite good results. For
example, Derivative will estimate the derivative of e” automatically. As we see, the final overall spacing used was
0.0078125.

>>> import numdifftools as nd

>>> from numpy import exp, allclose

>>> f = nd.Derivative(exp, full_output=True)
>>> val, info = £(1)

>>> allclose(val, 2.71828183)

True

>>> allclose(info.error_estimate, 6.927791673660977e-14)
True

>>> allclose(info.final_step, 0.0078125)

True

However, if we force the step size to be artificially large, then approximation error takes over.

24 Chapter 4. Topics guides

Numdifftools Documentation, Release 0.9.40

>>> f = nd.Derivative(exp, step=1, full_output=True)
>>> val, info = f(1)
>>> allclose(val, 3.19452805)

True

>>> allclose(val-exp(1l), 0.47624622)
True

>>> allclose(info.final_step, 1)
True

And if the step size is forced to be too small, then we see noise dominate the problem.

>>> f = nd.Derivative(exp, step=1e-10, full_output=True)
>>> val, info = £(1)
>>> allclose(val, 2.71828093)

True
>>> allclose(val - exp(l), -8.97648138e-07)
True
>>> allclose(info.final_step, 1.0000000e-10)
True

Numdifftools, like Goldilocks in the fairy tale bearing her name, stays comfortably in the middle ground.

4.9. Uncertainty estimates for Derivative

25

Numdifftools Documentation, Release 0.9.40

26

Chapter 4. Topics guides

CHAPTER
FIVE

REFERENCE

Technical reference material that details functions, modules, and objects included in numdifftools, describing what
they are and what they do.

5.1 Numdifftools summary

5.1.1 numdifftools.core module

Derivative (page 76)(fun[, step, method, order, n]) Calculate n-th derivative with finite difference approx-

imation

Gradient (page 79)(fun[, step, method, order, n]) Calculate Gradient with finite difference approxima-
tion

Jacobian (page 85)(fun[, step, method, order, n]) Calculate Jacobian with finite difference approxima-
tion

Hessdiag (page 81)(f[, step, method, order]) Calculate Hessian diagonal with finite difference ap-
proximation

Hessian (page 83)(f[, step, method, order]) Calculate Hessian with finite difference approxima-
tion

directionaldiff (page 91)(f, x0, vec, **options) Return directional derivative of a function of n vari-
ables

5.1.1.1 numdifftools.core.Derivative
class Derivative (fun, step=None, method='central’, order=2, n=1, **options)
Calculate n-th derivative with finite difference approximation
Parameters
fun [function] function of one array fun(x, *args, **kwds)

step [float, array-like or StepGenerator object, optional] Defines the spacing used in the ap-
proximation. Default is MinStepGenerator(**step_options) if method in in [‘complex’,
‘multicomplex’], otherwise

MaxStepGenerator(**step_options)
The results are extrapolated if the StepGenerator generate more than 3 steps.

method [{‘central’, ‘complex’, ‘multicomplex’, ‘forward’, ‘backward’ }] defines the method
used in the approximation

order [int, optional] defines the order of the error term in the Taylor approximation used.
For ‘central’ and ‘complex’ methods, it must be an even number.

n [int, optional] Order of the derivative.

27

Numdifftools Documentation, Release 0.9.40

richardson_terms: scalar integer, default 2. number of terms used in the Richardson ex-
trapolation.

full_output [bool, optional] If full_output is False, only the derivative is returned. If
full_output is True, then (der, r) is returned der is the derivative, and r is a Results
object.

**step_options: options to pass on to the XXXStepGenerator used.
Returns
der [ndarray] array of derivatives

See also:

Gradient (page 79)
Hessian (page 83)

Notes

Complex methods are usually the most accurate provided the function to differentiate is analytic. The
complex-step methods also requires fewer steps than the other methods and can work very close to the sup-
port of a function. The complex-step derivative has truncation error O(steps**2) for n=1 and O(steps**4)
for n larger, so truncation error can be eliminated by choosing steps to be very small. Especially the first
order complex-step derivative avoids the problem of round-off error with small steps because there is no
subtraction. However, this method fails if fun(x) does not support complex numbers or involves non-analytic
functions such as e.g.: abs, max, min. Central difference methods are almost as accurate and has no restric-
tion on type of function. For this reason the ‘central’ method is the default method, but sometimes one can
only allow evaluation in forward or backward direction.

For all methods one should be careful in decreasing the step size too much due to round-off errors.

Higher order approximation methods will generally be more accurate, but may also suffer more from numer-
ical problems. First order methods is usually not recommended.

References

Ridout, M.S. (2009) Statistical applications of the complex-step method of numerical differentiation.
The American Statistician, 63, 66-74

K.-L. Lai, J.L. Crassidis, Y. Cheng, J. Kim (2005), New complex step derivative approximations with
application to second-order kalman filtering, AIAA Guidance, Navigation and Control Conference,
San Francisco, California, August 2005, AIAA-2005-5944.

Lyness, J. M., Moler, C. B. (1966). Vandermonde Systems and Numerical Differentiation. Numerische
Mathematik.

Lyness, J. M., Moler, C. B. (1969). Generalized Romberg Methods for Integrals of Derivatives. Nu-
merische Mathematik.

Examples

>>> import numpy as np
>>> import numdifftools as nd

1’st derivative of exp(x), at X ==

>>> fd = nd.Derivative(np.exp)
>>> np.allclose(£d(1), 2.71828183)
True

28

Chapter 5. Reference

Numdifftools Documentation, Release 0.9.40

>>> d2 = fd([1, 2])
>>> np.allclose(d2,
True

[2.71828183,

7.3890561 1)

>>> def f(x):
return x**3 + x**2

>>> df = nd.Derivative(f)

>>> np.allclose(df(1), 5)

True

>>> ddf = nd.Derivative(f, n=2)
>>> np.allclose(ddf(1), 8)

True

Methods

__call__(x, *args, **kwds)

Call self as a function.

__init__(fun, step=None, method='central’, order=2, n=1, **options)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__ (page 29)(fun[, step, method, order, n])

Initialize self.

set_richardson_rule (page 78)(step_ratiol,
num_terms])

Set Richardson exptrapolation options

Attributes

method (page 78)

Defines the method used in the finite difference ap-
proximation.

method_order (page 78)

Defines the leading order of the error term in the
Richardson extrapolation method.

n (page 78)

Order of the derivative.

order (page 78)

Defines the order of the error term in the Taylor
approximation used.

step (page 79)

The step spacing(s) used in the approximation

5.1.1.2 numdifftools.core.Gradient

class Gradient (fun, step=None, method='central’, order=2, n=1, **options)
Calculate Gradient with finite difference approximation

Parameters

fun [function] function of one array fun(x, *args, **kwds)

step [float, array-like or StepGenerator object, optional] Defines the spacing used in the ap-
proximation. Default is MinStepGenerator(**step_options) if method in in [‘complex’,

‘multicomplex’], otherwise

MaxStepGenerator(**step_options)

5.1. Numdifftools summary

29

Numdifftools Documentation, Release 0.9.40

The results are extrapolated if the StepGenerator generate more than 3 steps.

method [{‘central’, ‘complex’, ‘multicomplex’, ‘forward’, ‘backward’ }] defines the method
used in the approximation

order [int, optional] defines the order of the error term in the Taylor approximation used.
For ‘central’ and ‘complex’ methods, it must be an even number.

richardson_terms: scalar integer, default 2. number of terms used in the Richardson ex-
trapolation.

full_output [bool, optional] If full _output is False, only the derivative is returned. If
full_output is True, then (der, r) is returned der is the derivative, and r is a Results
object.

**step_options: options to pass on to the XXXStepGenerator used.
Returns
grad [array] gradient

See also:

Derivative (page 76), Hessian (page 83), Jacobian (page 85)

Notes

Complex methods are usually the most accurate provided the function to differentiate is analytic. The
complex-step methods also requires fewer steps than the other methods and can work very close to the sup-
port of a function. The complex-step derivative has truncation error O(steps**2) for n=1 and O(steps**4)
for n larger, so truncation error can be eliminated by choosing steps to be very small. Especially the first
order complex-step derivative avoids the problem of round-off error with small steps because there is no
subtraction. However, this method fails if fun(x) does not support complex numbers or involves non-analytic
functions such as e.g.: abs, max, min. Central difference methods are almost as accurate and has no restric-
tion on type of function. For this reason the ‘central’ method is the default method, but sometimes one can
only allow evaluation in forward or backward direction.

For all methods one should be careful in decreasing the step size too much due to round-off errors.

Higher order approximation methods will generally be more accurate, but may also suffer more from numer-
ical problems. First order methods is usually not recommended.

If x0 is an n x m array, then fun is assumed to be a function of n * m variables.

References

Ridout, M.S. (2009) Statistical applications of the complex-step method of numerical differentiation.
The American Statistician, 63, 66-74

K.-L. Lai, J.L. Crassidis, Y. Cheng, J. Kim (2005), New complex step derivative approximations with
application to second-order kalman filtering, AIAA Guidance, Navigation and Control Conference,
San Francisco, California, August 2005, AIAA-2005-5944.

Lyness, J. M., Moler, C. B. (1966). Vandermonde Systems and Numerical Differentiation. Numerische
Mathematik.

Lyness, J. M., Moler, C. B. (1969). Generalized Romberg Methods for Integrals of Derivatives. Nu-
merische Mathematik.

30

Chapter 5. Reference

Numdifftools Documentation, Release 0.9.40

Examples

>>> import numpy as np

>>> import numdifftools as nd

>>> fun = lambda x: np.sum(x**2)

>>> dfun = nd.Gradient(fun)

>>> np.allclose(dfun([1,2,31), [2., 4., 6.]1)
True

At [x,y] = [1,1], compute the numerical gradient # of the function sin(x-y) + y*exp(x)

>>> sin = np.sin; exp = np.exp

>>>x,y=1,1

>>> z = lambda xy: sin(xy[0]-xy[1]) + xy[1]*exp(xy[0])

>>> dz = nd.Gradient(z)

>>> dz_dx, dz_dy = dz([x, y1)

>>> np.allclose([dz_dx, dz_dy],

cas [3.7182818284590686, 1.7182818284590162])
True

At the global minimizer (1,1) of the Rosenbrock function, # compute the gradient. It should be essentially
ZerO0.

>>> rosen = lambda x : (1-x[0])**2 + 105.*(x[1]-x[0]**2)**2
>>> grad_rosen = nd.Gradient(rosen)

>>> df_dx, df_dy = grad_rosen([x, y])

>>> np.allclose([df_dx, df_dy], [0, 0])

True
Methods
__call__(x, *args, **kwds) Call self as a function.

__init__(fun, step=None, method='"central’, order=2, n=1, **options)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__ (page 31)(fun[, step, method, order, n]) Initialize self.

set_richardson_rule (page 8l)(step_ratio[, Set Richardson exptrapolation options

num_terms])

Attributes
method (page 81) Defines the method used in the finite difference ap-
proximation.
method_order (page 81) Defines the leading order of the error term in the
Richardson extrapolation method.
n (page 81) Order of the derivative.
order (page 81) Defines the order of the error term in the Taylor

approximation used.

continues on next page

5.1.

Numdifftools summary 31

Numdifftools Documentation, Release 0.9.40

Table 5.7 — continued from previous page

step (page 81) The step spacing(s) used in the approximation

5.1.1.3 numdifftools.core.Jacobian

class Jacobian(fun, step=None, method='central’, order=2, n=1, **options)

Calculate Jacobian with finite difference approximation
Parameters
fun [function] function of one array fun(x, *args, **kwds)

step [float, array-like or StepGenerator object, optional] Defines the spacing used in the ap-
proximation. Default is MinStepGenerator(**step_options) if method in in [‘complex’,
‘multicomplex’], otherwise

MaxStepGenerator(**step_options)
The results are extrapolated if the StepGenerator generate more than 3 steps.

method [{‘central’, ‘complex’, ‘multicomplex’, ‘forward’, ‘backward’ }] defines the method
used in the approximation

order [int, optional] defines the order of the error term in the Taylor approximation used.
For ‘central’ and ‘complex’ methods, it must be an even number.

richardson_terms: scalar integer, default 2. number of terms used in the Richardson ex-
trapolation.

full_output [bool, optional] If full_output is False, only the derivative is returned. If
full_output is True, then (der, r) is returned der is the derivative, and r is a Results
object.

**step_options: options to pass on to the XXXStepGenerator used.
Returns
jacob [array] Jacobian

See also:

Derivative (page 76), Hessian (page 83), Gradient (page 79)

Notes

Complex methods are usually the most accurate provided the function to differentiate is analytic. The
complex-step methods also requires fewer steps than the other methods and can work very close to the sup-
port of a function. The complex-step derivative has truncation error O(steps**2) for n=1 and O(steps**4)
for n larger, so truncation error can be eliminated by choosing steps to be very small. Especially the first
order complex-step derivative avoids the problem of round-off error with small steps because there is no
subtraction. However, this method fails if fun(x) does not support complex numbers or involves non-analytic
functions such as e.g.: abs, max, min. Central difference methods are almost as accurate and has no restric-
tion on type of function. For this reason the ‘central’ method is the default method, but sometimes one can
only allow evaluation in forward or backward direction.

For all methods one should be careful in decreasing the step size too much due to round-off errors.

Higher order approximation methods will generally be more accurate, but may also suffer more from numer-
ical problems. First order methods is usually not recommended.

If fun returns a 1d array, it returns a Jacobian. If a 2d array is returned by fun (e.g., with a value for each
observation), it returns a 3d array with the Jacobian of each observation with shape xk x nobs x xk. Le., the
Jacobian of the first observation would be [:, 0, :]

32

Chapter 5. Reference

Numdifftools Documentation, Release 0.9.40

References

Ridout, M.S. (2009) Statistical applications of the complex-step method of numerical differentiation.
The American Statistician, 63, 66-74

K.-L. Lai, J.L. Crassidis, Y. Cheng, J. Kim (2005), New complex step derivative approximations with
application to second-order kalman filtering, AIAA Guidance, Navigation and Control Conference,
San Francisco, California, August 2005, AIAA-2005-5944.

Lyness, J. M., Moler, C. B. (1966). Vandermonde Systems and Numerical Differentiation. Numerische
Mathematik.

Lyness, J. M., Moler, C. B. (1969). Generalized Romberg Methods for Integrals of Derivatives. Nu-
merische Mathematik.

Examples

>>> import numpy as np
>>> import numdifftools as nd

#(nonlinear least squares)

>>> xdata = np.arange(0,1,0.1)

>>> ydata = 1+2*np.exp(0.75*xdata)

>>> fun = lambda c: (c[0]+c[1]*np.exp(c[2]*xdata) - ydata)**2
>>> np.allclose(fun([1, 2, 0.75]).shape, (10,))

True

>>> jfun = nd.Jacobian(fun)

>>> val = jfun([1, 2, 0.75])

>>> np.allclose(val, np.zeros((10,3)))
True

>>> fun2 = lambda x : x[0]*x[1]*x[2]**2

>>> jfun2 = nd.Jacobian(fun2)

>>> np.allclose(jfun2([1.,2.,3.1), [[18., 9., 12.1D
True

>>> fun3 = lambda x : np.vstack((x[0]*x[1]*x[2]1**2, x[0]1*x[1]*x[2]1))
>>> jfun3 = nd.Jacobian(fun3)

>>> np.allclose(jfun3([1., 2., 3.1), [[C[18.]1, [9.1, [12.]1]1, [[6.1, [3.1, [2.111)
True

>>> np.allclose(jfun3([4., 5., 6.1), [[[180.], [144.], [240.]1], [[30.], [24.],.
~[20.11D)

True

>>> np.allclose(jfun3(np.array([[1.,2.,3.11).T), [[[18.]1, [9.], [12.1]1, [[6.],.
~[3.1, [2.11D

True

5.1. Numdifftools summary 33

Numdifftools Documentation, Release 0.9.40

Methods

__call__(x, *args, **kwds) Call self as a function.

__init__(fun, step=None, method='central’, order=2, n=1, **options)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__ (page 34)(fun[, step, method, order, n]) Initialize self.
set_richardson_rule (page 88)(step_ratio[, Set Richardson exptrapolation options
num_terms])

Attributes

method (page 87) Defines the method used in the finite difference ap-
proximation.

method_order (page 88) Defines the leading order of the error term in the
Richardson extrapolation method.

n (page 88) Order of the derivative.

order (page 88) Defines the order of the error term in the Taylor
approximation used.

step (page 88) The step spacing(s) used in the approximation

5.1.1.4 numdifftools.core.Hessdiag
class Hessdiag(f, step=None, method='central’, order=2, **options)
Calculate Hessian diagonal with finite difference approximation
Parameters
fun [function] function of one array fun(x, *args, **kwds)

step [float, array-like or StepGenerator object, optional] Defines the spacing used in the ap-
proximation. Default is MinStepGenerator(**step_options) if method in in [‘complex’,
‘multicomplex’], otherwise

MaxStepGenerator(**step_options)
The results are extrapolated if the StepGenerator generate more than 3 steps.

method [{‘central’, ‘complex’, ‘multicomplex’, ‘forward’, ‘backward’ }] defines the method
used in the approximationorder : int, optional defines the order of the error term in the
Taylor approximation used. For ‘central’ and ‘complex’ methods, it must be an even
number.

richardson_terms: scalar integer, default 2. number of terms used in the Richardson ex-
trapolation.

full_output [bool, optional] If full _output is False, only the derivative is returned. If
full_output is True, then (der, r) is returned der is the derivative, and r is a Results
object.

**step_options: options to pass on to the XXXStepGenerator used.
Returns

hessdiag [array] hessian diagonal

34 Chapter 5. Reference

Numdifftools Documentation, Release 0.9.40

See also:

Derivative (page 76), Hessian (page 83), Jacobian (page 85), Gradient (page 79)

Notes

Complex methods are usually the most accurate provided the function to differentiate is analytic. The
complex-step methods also requires fewer steps than the other methods and can work very close to the sup-
port of a function. The complex-step derivative has truncation error O(steps**2) for n=1 and O(steps**4)
for n larger, so truncation error can be eliminated by choosing steps to be very small. Especially the first
order complex-step derivative avoids the problem of round-off error with small steps because there is no
subtraction. However, this method fails if fun(x) does not support complex numbers or involves non-analytic
functions such as e.g.: abs, max, min. Central difference methods are almost as accurate and has no restric-
tion on type of function. For this reason the ‘central’ method is the default method, but sometimes one can
only allow evaluation in forward or backward direction.

For all methods one should be careful in decreasing the step size too much due to round-off errors.

Higher order approximation methods will generally be more accurate, but may also suffer more from numer-
ical problems. First order methods is usually not recommended.

References

Ridout, M.S. (2009) Statistical applications of the complex-step method of numerical differentiation.
The American Statistician, 63, 66-74

K.-L. Lai, J.L. Crassidis, Y. Cheng, J. Kim (2005), New complex step derivative approximations with
application to second-order kalman filtering, AIAA Guidance, Navigation and Control Conference,
San Francisco, California, August 2005, AIAA-2005-5944.

Lyness, J. M., Moler, C. B. (1966). Vandermonde Systems and Numerical Differentiation. Numerische
Mathematik.

Lyness, J. M., Moler, C. B. (1969). Generalized Romberg Methods for Integrals of Derivatives. Nu-
merische Mathematik.

Examples

>>> import numpy as np

>>> import numdifftools as nd

>>> fun = lambda x : x[0] + x[1]1**2 + x[2]**3
>>> Hfun = nd.Hessdiag(fun, full_output=True)
>>> hd, info = Hfun([1,2,3])

>>> np.allcloseChd, [0., 2., 18.1)

True

>>> np.all(info.error_estimate < le-11)
True

5.1. Numdifftools summary 35

Numdifftools Documentation, Release 0.9.40

Methods

__call__(x, *args, **kwds) Call self as a function.

__init__(f, step=None, method="central’, order=2, **options)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__ (page 36)(f[, step, method, order]) Initialize self.
set_richardson_rule (page 83)(step_ratio[, Set Richardson exptrapolation options
num_terms])

Attributes

method (page 83) Defines the method used in the finite difference ap-
proximation.

method_order (page 83) Defines the leading order of the error term in the
Richardson extrapolation method.

n (page 83) Order of the derivative.

order (page 83) Defines the order of the error term in the Taylor
approximation used.

step (page 83) The step spacing(s) used in the approximation

5.1.1.5 numdifftools.core.Hessian
class Hessian(f, step=None, method='central’, order=None, **options)
Calculate Hessian with finite difference approximation
Parameters
fun [function] function of one array fun(x, *args, **kwds)

step [float, array-like or StepGenerator object, optional] Defines the spacing used in the ap-
proximation. Default is MinStepGenerator(**step_options) if method in in [‘complex’,
‘multicomplex’], otherwise

MaxStepGenerator(**step_options)
The results are extrapolated if the StepGenerator generate more than 3 steps.

method [{‘central’, ‘complex’, ‘multicomplex’, ‘forward’, ‘backward’ }] defines the method
used in the approximation

richardson_terms: scalar integer, default 2. number of terms used in the Richardson ex-
trapolation.

full_output [bool, optional] If full_output is False, only the derivative is returned. If
full_output is True, then (der, r) is returned der is the derivative, and r is a Results
object.

**step_options: options to pass on to the XXXStepGenerator used.
Returns
hess [ndarray] array of partial second derivatives, Hessian

See also:

36 Chapter 5. Reference

Numdifftools Documentation, Release 0.9.40

Derivative (page 76), Hessian (page 83)

Notes

Complex methods are usually the most accurate provided the function to differentiate is analytic. The
complex-step methods also requires fewer steps than the other methods and can work very close to the sup-
port of a function. The complex-step derivative has truncation error O(steps**2) for n=1 and O(steps**4)
for n larger, so truncation error can be eliminated by choosing steps to be very small. Especially the first
order complex-step derivative avoids the problem of round-off error with small steps because there is no
subtraction. However, this method fails if fun(x) does not support complex numbers or involves non-analytic
functions such as e.g.: abs, max, min. Central difference methods are almost as accurate and has no restric-
tion on type of function. For this reason the ‘central’ method is the default method, but sometimes one can
only allow evaluation in forward or backward direction.

For all methods one should be careful in decreasing the step size too much due to round-off errors.

Computes the Hessian according to method as: ‘forward’ (4.7), ‘central’ (4.9) and ‘complex’ (4.10):

((f(z +dje; +drex) + f(z) — f(z +dje;) — f(x +dyex)))/(d;dy) (5.1

((f(z + djej + dreg) — f(x + dje; — diex)) — (f(x — dje; + diex) — f(x — dje; — diey))/(4d;dy)
(5.2)

imag(f(z + idje; + dreg) — f(z +idje; — dyer))/(2d;dy) (5.3)

where e; is a vector with element j is one and the rest are zero and d; is a scalar spacing steps;.

References
Ridout, M.S. (2009) Statistical applications of the complex-step method of numerical differentiation.
The American Statistician, 63, 66-74

K.-L. Lai, J.L. Crassidis, Y. Cheng, J. Kim (2005), New complex step derivative approximations with
application to second-order kalman filtering, AIAA Guidance, Navigation and Control Conference,
San Francisco, California, August 2005, AIAA-2005-5944.

Lyness, J. M., Moler, C. B. (1966). Vandermonde Systems and Numerical Differentiation. Numerische
Mathematik.

Lyness, J. M., Moler, C. B. (1969). Generalized Romberg Methods for Integrals of Derivatives. Nu-
merische Mathematik.

Examples

>>> import numpy as np
>>> import numdifftools as nd

Rosenbrock function, minimized at [1,1]

>>> rosen = lambda x : (1.-x[0])**2 + 105*(x[1]-x[0]**2)**2
>>> Hfun = nd.Hessian(rosen)
>>> h = Hfun([1, 1])
>>> h
array([[842., -420.],
[-420., 210.]11)

cos(x-y), at (0,0)

5.1.

Numdifftools summary 37

Numdifftools Documentation, Release 0.9.40

>>> COS = np.cos

>>> fun = lambda xy : cos(xy[0]-xy[1])
>>> Hfun2 = nd.Hessian(fun)

>>> h2 = Hfun2([0, 0])

>>> h2
array([[-1., 1.7,
[1., -1.1D
Methods
__call__(x, *args, **kwds) Call self as a function.

__init__(f, step=None, method='central’, order=None, **options)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__ (page 38)(f[, step, method, order]) Initialize self.
set_richardson_rule (page 85)(step_ratio[, Set Richardson exptrapolation options
num_terms])

Attributes

method (page 85) Defines the method used in the finite difference ap-
proximation.

method_order (page 85) Defines the leading order of the error term in the
Richardson extrapolation method.

n (page 85) Order of the derivative.

order (page 85) Defines the order of the error term in the Taylor
approximation used.

step (page 85) The step spacing(s) used in the approximation

5.1.1.6 numdifftools.core.directionaldiff
directionaldiff (f, x0, vec, **options)
Return directional derivative of a function of n variables
Parameters
f: function analytical function to differentiate.

x0: array vector location at which to differentiate ‘f’. If x0 is an nXm array, then ‘f’ is
assumed to be a function of n*m variables.

vec: array vector defining the line along which to take the derivative. It should be the same
size as x0, but need not be a vector of unit length.

**options: optional arguments to pass on to Derivative.
Returns
dder: scalar estimate of the first derivative of ‘f’ in the specified direction.

See also:

38 Chapter 5. Reference

Numdifftools Documentation, Release 0.9.40

Derivative (page 76)
Gradient (page 79)
Examples

At the global minimizer (1,1) of the Rosenbrock function, compute the directional derivative in the direction
[12]

>>> import numpy as np

>>> import numdifftools as nd

>>> vec = np.r_[1, 2]

>>> rosen = lambda x: (1-x[0])**2 + 105%(x[1]-x[0]**2)**2

>>> dd, info = nd.directionaldiff(rosen, [1, 1], vec, full_output=True)
>>> np.allclose(dd, 0)

True

>>> np.abs(info.error_estimate)<le-14

True

5.1.2 Step generators

BasicMaxStepGenerator (page 125)(base_step, Generates a sequence of steps of decreasing magni-

step_ratio, ...) tude

BasicMinStepGenerator (page 126)(base_step, Generates a sequence of steps of decreasing magni-
step_ratio, ...) tude

MinStepGenerator (page 127)([base_step, Generates a sequence of steps

step_ratio, ...])

MaxStepGenerator (page 126)([base_step, Generates a sequence of steps

step_ratio, ...])

5.1.2.1 numdifftools.step_generators.BasicMaxStepGenerator
class BasicMaxStepGenerator (base_step, step_ratio, num_steps, offset=0)
Generates a sequence of steps of decreasing magnitude
where steps = base_step * step_ratio ** (-i + offset)
for i=0, 1..., num_steps-1.
Parameters
base_step [float, array-like.] Defines the start step, i.e., maximum step
step_ratio [real scalar.] Ratio between sequential steps generated. Note: Ratio > 1
num_steps [scalar integer.] defines number of steps generated.

offset [real scalar, optional, default O] offset to the base step

5.1. Numdifftools summary 39

Numdifftools Documentation, Release 0.9.40

Examples

>>> from numdifftools.step_generators import BasicMaxStepGenerator
>>> step_gen = BasicMaxStepGenerator(base_step=2.0, step_ratio=2,
. num_steps=4)

>>> [s for s in step_gen()]
[2.0, 1.0, 0.5, 0.25]

__init__(base_step, step_ratio, num_steps, offset=0)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__ (page 40)(base_step, step_ratio, Initialize self.
num_steps|, ...])

5.1.2.2 numdifftools.step_generators.BasicMinStepGenerator

class BasicMinStepGenerator (base_step, step_ratio, num_steps, offset=0)

Generates a sequence of steps of decreasing magnitude

where steps = base_step * step_ratio ** (i + offset), i=num_steps-1,... 1, 0.

Parameters
base_step [float, array-like.] Defines the end step, i.e., minimum step
step_ratio [real scalar.] Ratio between sequential steps generated. Note: Ratio > 1
num_steps [scalar integer.] defines number of steps generated.

offset [real scalar, optional, default O] offset to the base step

Examples

>>> from numdifftools.step_generators import BasicMinStepGenerator
>>> step_gen = BasicMinStepGenerator(base_step=0.25, step_ratio=2,
v num_steps=4)

>>> [s for s in step_gen()]
[2.0, 1.0, 0.5, 0.25]

__init__(base_step, step_ratio, num_steps, offset=0)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__ (page 40)(base_step, step_ratio, Initialize self.
num_steps|, ...])

40

Chapter 5. Reference

Numdifftools Documentation, Release 0.9.40

5.1.2.3 numdifftools.step_generators.MinStepGenerator

class MinStepGenerator (base_step=None, step_ratio=None, num_steps=None, step_nom=None, offset=0,
num_extrap=0, use_exact_steps=True, check_num_steps=True, scale=None)
Generates a sequence of steps

where steps = step_nom * base_step * step_ratio ** (i + offset)
for i = num_steps-1,... 1, 0.
Parameters

base_step [float, array-like, optional] Defines the minimum step, if None, the value is set to
EPS**(1/scale)

step_ratio [real scalar, optional, default 2] Ratio between sequential steps generated. Note:
Ratio > 1 If None then step_ratio is 2 for n=1 otherwise step_ratio is 1.6

num_steps [scalar integer, optional, default min_num_steps + num_extrap] defines number
of steps generated. It should be larger than min_num_steps = (n + order - 1) / fact where
factis 1, 2 or 4 depending on differentiation method used.

step_nom [default maximum(log(exp(1)+|x|), 1)] Nominal step where x is supplied at run-
time through the __call__ method.

offset [real scalar, optional, default O] offset to the base step
num_extrap [scalar integer, default O] number of points used for extrapolation

check_num_steps [boolean, default True] If True make sure num_steps is larger than the
minimum required steps.

use_exact_steps [boolean, default True] If true make sure exact steps are generated

scale [real scalar, optional] scale used in base step. If not None it will override the default
computed with the default_scale function.

__init__(base_step=None, step_ratio=None, num_steps=None, step_nom=None, offset=0,
num_extrap=0, use_exact_steps=True, check_num_steps=True, scale=None)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__ (page 41)([base_step, step_ratio, Initialize self.
num_steps, ...])

step_generator_function (page 127)(x[, Step generator function
method, n, order])

Attributes

base_step (page 127) Base step defines the minimum or maximum step
when offset==0.

min_num_steps (page 127) Minimum number of steps required given the dif-
ferentiation method and order.

num_steps (page 127) Defines number of steps generated

scale (page 127) Scale used in base step.

step_nom (page 127) Nominal step

step_ratio (page 127) Ratio between sequential steps generated

5.1. Numdifftools summary 41

Numdifftools Documentation, Release 0.9.40

5.1.2.4 numdifftools.step_generators.MaxStepGenerator

class MaxStepGenerator (base_step=2.0, step_ratio=None, num_steps=15, step_nom=None, offset=0,
num_extrap=9, use_exact_steps=False, check_num_steps=True, scale=500)
Generates a sequence of steps

where steps = step_nom * base_step * step_ratio ** (-i + offset)
fori=0, 1, ..., num_steps-1.
Parameters

base_step [float, array-like, default 2.0] Defines the maximum step, if None, the value is set
to EPS**(1/scale)

step_ratio [real scalar, optional, default 2 or 1.6] Ratio between sequential steps generated.
Note: Ratio > 1 If None then step_ratio is 2 for n=1 otherwise step_ratio is 1.6

num_steps [scalar integer, optional, default min_num_steps + num_extrap] defines number
of steps generated. It should be larger than min_num_steps = (n + order - 1) / fact where
factis 1, 2 or 4 depending on differentiation method used.

step_nom [default maximum(log(exp(1)+|x|), 1)] Nominal step where x is supplied at run-
time through the __call__ method.

offset [real scalar, optional, default O] offset to the base step
num_extrap [scalar integer, default O] number of points used for extrapolation

check_num_steps [boolean, default True] If True make sure num_steps is larger than the
minimum required steps.

use_exact_steps [boolean, default True] If true make sure exact steps are generated
scale [real scalar, default 500] scale used in base step.

__init__(base_step=2.0, step_ratio=None, num_steps=15, step_nom=None, offset=0, num_extrap=9,
use_exact_steps=False, check_num_steps=True, scale=500)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__ (page 42)([base_step, step_ratio, Initialize self.
num_steps, ...])
step_generator_function(x[, method, n, or- Step generator function

der])
Attributes

base_step Base step defines the minimum or maximum step
when offset==0.

min_num_steps Minimum number of steps required given the dif-
ferentiation method and order.

num_steps Defines number of steps generated

scale Scale used in base step.

step_nom Nominal step

step_ratio Ratio between sequential steps generated

42 Chapter 5. Reference

Numdifftools Documentation, Release 0.9.40

5.1.3 numdifftools.extrapolation module

convolve (page 94)(sequence, rule, **kwds) Wrapper around scipy.ndimage.convolveld that al-

lows complex input.

Dea (page 92)([limexp]) Extrapolate a slowly convergent sequence using re-

peated Shanks transformations.

dea3 (page 94)(v_0, v_1, v_2[, symmetric]) Extrapolate a slowly convergent sequence using

Shanks transformations.

Richardson (page 93)([step_ratio, step, order, Extrapolates a sequence with Richardsons method
num_terms])

5.1.3.1 numdifftools.extrapolation.convolve

convolve (sequence, rule, **kwds)

Wrapper around scipy.ndimage.convolveld that allows complex input.

5.1.3.2 numdifftools.extrapolation.Dea

class Dea(limexp=50)

Extrapolate a slowly convergent sequence using repeated Shanks transformations.

Notes

DEA attempts to extrapolate nonlinearly by Shanks transformations to a better estimate of the sequence’s
limiting value, thus improving the rate of convergence. The epsilon algorithm of P. Wynn, see [1]_, is used
to perform the non-linear Shanks transformations. The routine is a translation of the DQELG function found
in the QUADPACK fortran library, see [2]_ and [3]_.

List of major variables:

LIMEXP: scalar integer The maximum number of elements the epsilon table data can contain. The ep-
silon table is stored in the first (LIMEXP+2) entries of EPSTAB.

EPSTAB: real vector or size (LIMEXP+2+3)

The first LIMEXP+2 elements contains the two lower diagonals of the triangular epsilon table.
The elements are numbered starting at the right-hand corner of the

triangle.

E0,E1,E2,E3: real scalars The 4 elements on which the computation of a new element in the epsilon table
is based.

NRES: scalar integer Number of extrapolation results actually generated by the epsilon algorithm in prior
calls to the routine.

NEWELM: scalar integer Number of elements to be computed in the new diagonal of the epsilon table.
The condensed epsilon table is computed. Only those elements needed for the computation of the next
diagonal are preserved.

RES: real scalar New element in the new diagonal of the epsilon table.

ERROR: real scalar An estimate of the absolute error of RES. The routine decides whether RESULT=RES
or RESULT=SVALUE by comparing ERROR with abserr from the previous call.

RES3LA: real vector of size 3 Contains at most the last 3 results.

__init__ (limexp=50)
Initialize self. See help(type(self)) for accurate signature.

5.1.

Numdifftools summary 43

Numdifftools Documentation, Release 0.9.40

Methods
__init__ (page 43)([limexp]) Initialize self.
Attributes
limexp (page 92) Maximum number of elements the epsilon table

data.

5.1.3.3 numdifftools.extrapolation.dea3
dea3(v_0,v_I,v_2, symmetric=False)
Extrapolate a slowly convergent sequence using Shanks transformations.
Parameters
v_0,v_1,v_2 [array-like] 3 values of a convergent sequence to extrapolate
Returns
result [array-like] extrapolated value
abserr [array-like] absolute error estimate

See also:

Dea (page 92)

Notes

DEA3 attempts to extrapolate nonlinearly by Shanks transformations to a better estimate of the sequence’s
limiting value based on only three values. The epsilon algorithm of P. Wynn, see [Rc8bfc08f7c28-1], is used
to perform the non-linear Shanks transformations. The routine is a vectorized translation of the DQELG func-

tion found in the QUADPACK fortran library for LIMEXP=3, see [Rc8bfc08f7c28-2] and [Rc8bfc08f7c28-
3].

References
Examples

integrate sin(x) from O to pi/2

>>> import numpy as np
>>> import numdifftools as nd
>>> Ei= np.zeros(3)
>>> linfun = lambda i : np.linspace(0, np.pi/2., 2%*(i+5)+1)
>>> for k in np.arange(3):
x = linfun(k)
A Ei[k] = np.trapz(np.sin(x),x)
>>> [En, err] = nd.dea3(Ei[0], Ei[1], Ei[2])
>>> truErr = np.abs(En-1.)
>>> np.all(truErr < err)
True
>>> np.allclose(En, 1)
True

(continues on next page)

44 Chapter 5. Reference

Numdifftools Documentation, Release 0.9.40

(continued from previous page)

>>> np.all(np.abs(Ei-1)<le-3)
True

5.1.3.4 numdifftools.extrapolation.Richardson
class Richardson(step_ratio=2.0, step=1, order=1, num_terms=2)
Extrapolates a sequence with Richardsons method
Parameters
step_ratio: real scalar Ratio between sequential steps, h, generated.

step: scalar integer Defines the step between exponents in the error polynomial, i.e., step
=k 1-k 0=k 2-k 1=... =k_{i+1}-k.i

order: scalar integer Leading order of truncation error.

num_terms: scalar integer Number of terms used in the polynomial fit.

Notes

Suppose f(h) is an approximation of L (exact value) that depends on a positive step size h described with a
sequence of the form

L =f(h) + a0 * h"k_0 + al * h"k_1+ a2 *h"k_2 +...

where the ai are unknown constants and the k_i are known constants such that h"k_i > h”A(k_i+1).

If we evaluate the right hand side for different stepsizes h we can fit a polynomial to that sequence of approx-
imations. This is exactly what this class does. Here k_0 is the leading order step size behavior of truncation
error as L = f(h)+O(h”k_0) (f(h) -> L as h -> 0, but f(0) !=L) and k_i = order + step *1i .

Examples

>>> import numpy as np
>>> import numdifftools as nd
>>>n = 3
>>> Ei = np.zeros((n,1))
>>> h = np.zeros((n,1))
>>> linfun = lambda i : np.linspace(0, np.pi/2., 2%*(i+5)+1)
>>> for k in np.arange(n):
x = linfun(k)
h[k] = x[1]
- Ei[k] = np.trapz(np.sin(x),x)
>>> En, err, step = nd.Richardson(step=1, order=1)(Ei, h)
>>> truErr = np.abs(En-1.)
>>> np.all(truErr < err)

True

>>> np.all(np.abs(Ei-1)<le-3)
True

>>> np.allclose(En, 1)

True

__init__ (step_ratio=2.0, step=1, order=1, num_terms=2)
Initialize self. See help(type(self)) for accurate signature.

5.1. Numdifftools summary 45

Numdifftools Documentation, Release 0.9.40

Methods

__init__ (page 45)([step_ratio, order,

num_terms])

step,

Initialize self.

extrapolate (page 94)(sequence, steps)

Extrapolate sequence

rule (page 94)([sequence_length])

Returns extrapolation rule.

5.1.4 numdifftools.limits module

CStepGenerator (page 105)([base_step, step_ratio,
D

Generates a sequence of steps

Limit (page method, order,

full_output])

106)(fun[, step,

Compute limit of a function at a given point

Residue (page 108)(f], step, method, order, ...])

Compute residue of a function at a given point

5.1.4.1 numdifftools.limits.CStepGenerator

class CStepGenerator (base_step=None, step_ratio=4.0, num_steps=None, step_nom=None, offset=0,

scale=1.2, **options)
Generates a sequence of steps

where steps = base_step * step_nom * (exp(1lj*dtheta) * step_ratio) ** (i + offset)

fori=0, 1, ..., num_steps-1

Parameters

base_step [float, array-like, default None] Defines the minimum step, if None, the value is

set to EPS**(1/scale)

step_ratio [real scalar, optional, default 4.0] Ratio between sequential steps generated.

num_steps [scalar integer, optional,] defines number of steps generated. If None the value
is 2 * int(round(16.0/log(abs(step_ratio)))) + 1

step_nom [default maximum(log(exp(1)+|x|), 1)] Nominal step where x is supplied at run-

time through the __call__ method.

offset [real scalar, optional, default 0] offset to the base step

use_exact_steps [boolean, default True.] If true make sure exact steps are generated.

scale [real scalar, default 1.2] scale used in base step.

path [‘radial’ or ‘spiral’] Specifies the type of path to take the limit along. Default ‘radial’.

dtheta: real scalar, default pi/8 If the path is ‘spiral’ it will follow an exponential spiral
into the limit, with angular steps at dtheta radians.

__init__(base_step=None, step_ratio=4.0, num_steps=None, step_nom=None, offset=0, scale=1.2,

**options)

Initialize self. See help(type(self)) for accurate signature.

46

Chapter 5. Reference

Numdifftools Documentation, Release 0.9.40

Methods

__init__ (page 46)([base_step,
num_steps, ...])

step_ratio,

Initialize self.

step_generator_function(x[, method, n, or-
der])

Step generator function

Attributes

base_step

Base step defines the minimum or maximum step
when offset==0.

dtheta (page 106)

Angular steps in radians used for the exponential
spiral path.

min_num_steps

Minimum number of steps required given the dif-
ferentiation method and order.

num_steps (page 106)

The number of steps generated

scale

Scale used in base step.

step_nom

Nominal step

step_ratio (page 106)

Ratio between sequential steps generated.

5.1.4.2 numdifftools.limits.Limit

class Limit(fun, step=None, method='above', order=4, full_output=False, **options)

Compute limit of a function at a given point

Parameters

fun [callable] function fun(z, *args, **kwds) to compute the limit for z->z0. The function,
fun, is assumed to return a result of the same shape and size as its input, z.

step: float, complex, array-like or StepGenerator object, optional Defines the spacing
used in the approximation. Default is CStepGenerator(base_step=step, **options)

method [{‘above’, ‘below’}] defines if the limit is taken from above or below

order: positive scalar integer, optional. defines the order of approximation used to find the
specified limit. The order must be member of [1 23456 7 8]. 4 is a good compromise.

full_output: bool If true return additional info.

options: options to pass on to CStepGenerator

Returns

limit_fz: array like estimated limit of f(z) as z —> z0

info: Only given if full_output is True and contains the following:

error estimate: ndarray 95 % uncertainty estimate around the limit, such that
abs(limit_fz - lim z->z0 f(z)) < error_estimate

final_step: ndarray final step used in approximation

5.1.

Numdifftools summary

Numdifftools Documentation, Release 0.9.40

Notes

Limit computes the limit of a given function at a specified point, z0. When the function is evaluable at the
point in question, this is a simple task. But when the function cannot be evaluated at that location due to
a singularity, you may need a tool to compute the limit. Limit does this, as well as produce an uncertainty
estimate in the final result.

The methods used by Limit are Richardson extrapolation in a combination with Wynn’s epsilon algorithm
which also yield an error estimate. The user can specify the method order, as well as the path into z0. zO may
be real or complex. Limit uses a proportionally cascaded series of function evaluations, moving away from
your point of evaluation along a path along the real line (or in the complex plane for complex z0 or step.)
The step_ratio is the ratio used between sequential steps. The sign of step allows you to specify a limit from
above or below. Negative values of step will cause the limit to be taken approaching z0 from below.

A smaller step_ratio means that Limit will take more function evaluations to evaluate the limit, but the result
will potentially be less accurate. The step_ratio MUST be a scalar larger than 1. A value in the range [2,100]
is recommended. 4 seems a good compromise.

>>> import numpy as np

>>> from numdifftools.limits import Limit

>>> def f(x): return np.sin(x)/x

>>> 1lim_f0, err = Limit(£f, full_output=True) (0)

>>> np.allclose(lim_f£0, 1)

True

>>> np.allclose(err.error_estimate, 1.77249444610966e-15)
True

Compute the derivative of cos(x) at x == pi/2. It should be -1. The limit will be taken as a function of the
differential parameter, dx.

>>> x0 = np.pi/2;

>>> def g(x): return (np.cos(x0+x)-np.cos(x0))/x
>>> 1lim_g0, err = Limit(g, full_output=True) (0)
>>> np.allclose(lim_g0®, -1)

True

>>> err.error_estimate < le-14

True

Compute the residue at a first order pole at z = O The function 1./(1-exp(2*z)) has a pole at z == 0. The
residue is given by the limit of z*fun(z) as z —> 0. Here, that residue should be -0.5.

>>> def h(z): return -z/(np.expml(2%z))

>>> 1lim_hO®, err = LimitCh, full_output=True) (0)
>>> np.allclose(1lim_h®, -0.5)

True

>>> err.error_estimate < le-14

True

Compute the residue of function 1./sin(z)**2 at z = 0. This pole is of second order thus the residue is given
by the limit of z**2*fun(z) as z —> 0.

>>> def g(z): return z**2/(np.sin(z)**2)

>>> lim_gpi, err = Limit(g, full_output=True) (0)
>>> np.allclose(lim_gpi, 1)

True

>>> err.error_estimate < le-14

True

A more difficult limit is one where there is significant subtractive cancellation at the limit point. In the
following example, the cancellation is second order. The true limit should be 0.5.

48

Chapter 5. Reference

Numdifftools Documentation, Release 0.9.40

>>> def k(x): return (x*np.exp(x)-np.expml(x))/x**2
>>> lim_kO,err = Limit(k, full_output=True) (0)

>>> np.allclose(1im_kO, 0.5)

True

>>> err.error_estimate < 1.0e-8

True

>>> def h(x): return (x-np.sin(x))/x**3

>>> lim_hO®, err = LimitCh, full_output=True) (0)
>>> np.allclose(lim_hO®, 1./6)

True

>>> err.error_estimate < le-8

True

__init__ (fun, step=None, method='above', order=4, full_output=False, **options)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__ (page 49)(fun[, step, method, order, Initialize self.
full_output])

limit (page 108)(x, *args, **kwds) Return lim f(z) as z-> x
Attributes
step The step spacing(s) used in the approximation

5.1.4.3 numdifftools.limits.Residue
class Residue (f, step=None, method='above', order=None, pole_order=1, full_output=False, **options)
Compute residue of a function at a given point
Parameters

fun [callable] function fun(z, *args, **kwds) to compute the Residue at z=z0. The function,
fun, is assumed to return a result of the same shape and size as its input, z.

step: float, complex, array-like or StepGenerator object, optional Defines the spacing
used in the approximation. Default is CStepGenerator(base_step=step, **options)

method [{‘above’, ‘below’}] defines if the limit is taken from above or below

order: positive scalar integer, optional. defines the order of approximation used to find the
specified limit. The order must be member of [1234 567 8]. 4 is a good compromise.

pole_order [scalar integer] specifies the order of the pole at z0.
full_output: bool If true return additional info.
options: options to pass on to CStepGenerator

Returns

res_fz: array like estimated residue, i.e., limit of f(z)*(z-z0)**pole_order as z —> z0 When
the residue is estimated as approximately zero,

the wrong order pole may have been specified.

info: namedtuple, Only given if full_output is True and contains the following:

5.1. Numdifftools summary 49

Numdifftools Documentation, Release 0.9.40

error estimate: ndarray 95 % uncertainty estimate around the residue, such that
abs(res_{z - lim z->z0 f(z)*(z-z0)**pole_order) < error_estimate Large uncertainties
here suggest that the wrong order pole was specified for f(z0).

final_step: ndarray final step used in approximation

Notes

Residue computes the residue of a given function at a simple first order pole, or at a second order pole.

The methods used by residue are polynomial extrapolants, which also yield an error estimate. The user can
specify the method order, as well as the order of the pole.

Z0 - scalar point at which to compute the residue. z0 may be real or complex.

See the document DERIVEST.pdf for more explanation of the algorithms behind the parameters of Residue.
In most cases, the user should never need to specify anything other than possibly the PoleOrder.

Examples

A first order pole at z = 0

>>> import numpy as np

>>> from numdifftools.limits import Residue

>>> def f(z): return -1./(np.expml(2*%z))

>>> res_f, info = Residue(f, full_output=True) (0)
>>> np.allclose(res_f, -0.5)

True

>>> info.error_estimate < le-14

True

A second order pole around z = 0 and z = pi >>> def h(z): return 1.0/np.sin(z)**2 >>> res_h,
info = Residue(h, full_output=True, pole_order=2)([0, np.pi]) >>> np.allclose(res_h, 1) True >>>
(info.error_estimate < le-10).all() True

__init__(f, step=None, method='above', order=None, pole_order=1, full_output=False, **options)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__ (page S0)(f[, step, method, order, ...]) Initialize self.

limit(x, *args, **kwds) Return lim f(z) as z-> x
Attributes
step The step spacing(s) used in the approximation

50

Chapter 5. Reference

Numdifftools Documentation, Release 0.9.40

5.1.5 numdifftools.multicomplex module

Bicomplex (page 109)(z1, z2) Creates an instance of a Bicomplex object.

5.1.5.1 numdifftools.multicomplex.Bicomplex

class Bicomplex(z/, z2)
Creates an instance of a Bicomplex object. zeta = z1 + j*z2, where z1 and z2 are complex numbers.

__init__(zl, 72, dtype=<class 'numpy.complex128'>)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__ (page 51)(zl, z2[, dtype]) Initialize self.
arccos (page 109)()

arccosh (page 109)()

arcsin (page 109)()

arcsinh (page 110)()

arctan (page 110)()

arctanh (page 110)()

arg_c (page 110)()

arg_clp (page 110)()

asarray (page 110)(other)

conjugate (page 110)()

cos (page 110)()

cosh (page 110)()

cot (page 110)()

coth (page 110)()

csc (page 110)()

csch (page 110)()

dot (page 110)(other)

exp (page 110)()

exp2 (page 110)()

continues on next page

5.1. Numdifftools summary 51

Numdifftools Documentation, Release 0.9.40

Table 5.36 — continued from previous page

expml (page 110)()

flat (page 110)(index)

log (page 110)()

log10 (page 110)()

loglp (page 110)()

log2 (page 111)()

logaddexp (page 111)(other)

logaddexp2 (page 111)(other)

mat2bicomp (page 111)(arr)

mod_c (page 111)()

Complex modulus

norm (page 111)()

sec (page 111)()

sech (page 111)()

sin (page 111)()

sinh (page 111)()

sqrt (page 111)()

tan (page 111)()

tanh (page 111)()

Attributes

imag (page 110)

imagl (page 110)

imagl2 (page 110)

imag2 (page 110)

real (page 111)

shape (page 111)

size (page 111)

z1 (page 111)

continues on next page

52

Chapter 5. Reference

Numdifftools Documentation, Release 0.9.40

Table 5.37 — continued from previous page

z2 (page 111)

5.1.6 numdifftools.nd_algopy module

Derivative
full_output])

112)(fun|, n, method,

(page

Calculate n-th derivative with Algorithmic Differenti-
ation method

Gradient (page 113)(fun[, n, method, full_output])

Calculate Gradient with Algorithmic Differentiation
method

Jacobian (page 117)(fun[, n, method, full_output])

Calculate Jacobian with Algorithmic Differentiation
method

Hessdiag (page 115)(f[, method, full_output])

Calculate Hessian diagonal with Algorithmic Differ-
entiation method

Hessian (page 116)(f[, method, full_output])

Calculate Hessian with Algorithmic Differentiation
method

directionaldiff (page 119)(f, x0, vec, **options)

Return directional derivative of a function of n vari-
ables

5.1.6.1 numdifftools.nd_algopy.Derivative

class Derivative (fun, n=1, method='forward’, full_output=False)
Calculate n-th derivative with Algorithmic Differentiation method

Parameters

fun: function function of one array fun(x, *args, **kwds)

n: int, optional Order of the derivative.

method: string, optional {‘forward’, ‘reverse’} defines method used in the approximation

Returns
der: ndarray array of derivatives

See also:

Gradient (page 113)
Hessdiag (page 115)
Hessian (page 116)

Jacobian (page 117)

Notes

Algorithmic differentiation is a set of techniques to numerically evaluate the derivative of a function specified
by a computer program. AD exploits the fact that every computer program, no matter how complicated,
executes a sequence of elementary arithmetic operations (addition, subtraction, multiplication, division, etc.)
and elementary functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations,
derivatives of arbitrary order can be computed automatically, accurately to working precision, and using at
most a small constant factor more arithmetic operations than the original program.

5.1. Numdifftools summary

53

Numdifftools Documentation, Release 0.9.40

References
Sebastian F. Walter and Lutz Lehmann 2013, “Algorithmic differentiation in Python with AlgoPy”, in Jour-

nal of Computational Science, vol 4, no 5, pp 334 - 344, http://www.sciencedirect.com/science/article/pii/
S1877750311001013

https://en.wikipedia.org/wiki/Automatic_differentiation

Examples

1’st and 2’nd derivative of exp(x), at X ==

>>> import numpy as np
>>> import numdifftools.nd_algopy as nda

>>> fd = nda.Derivative(np.exp) # 1'st derivative
>>> np.allclose(£fd(1), 2.718281828459045)

True

>>> fd5 = nda.Derivative(np.exp, n=5) # 5'th derivative
>>> np.allclose(£d5(1), 2.718281828459045)

True

1’st derivative of x*3+x”4, at x = [0,1]

>>> fun = lambda x: x**3 + x**%4

>>> fd3 = nda.Derivative(fun)

>>> np.allclose(£d3([0,11), [0., 7.1
True

Methods

_call__: callable with | x: array_like value at which function derivative is evaluated args: tuple
the following parame- | Arguments for function fun. kwds: dict Keyword arguments for function
ters: fun.

__init__ (fun, n=1, method='forward', full_output=False)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__ (page 54)(fun[, n, method, full_output]) Initialize self.
computational_graph(x, *args, **kwds)

54 Chapter 5. Reference

http://www.sciencedirect.com/science/article/pii/S1877750311001013
http://www.sciencedirect.com/science/article/pii/S1877750311001013
https://en.wikipedia.org/wiki/Automatic_differentiation

Numdifftools Documentation, Release 0.9.40

Attributes

fun

5.1.6.2 numdifftools.nd_algopy.Gradient

class Gradient (fun, n=1, method='forward', full_output=False)

Calculate Gradient with Algorithmic Differentiation method
Parameters
fun: function function of one array fun(x, *args, **kwds)
method: string, optional {‘forward’, ‘reverse’} defines method used in the approximation
Returns
grad: array gradient

See also:

Derivative (page 112)
Jacobian (page 117)
Hessdiag (page 115)
Hessian (page 116)

Notes

Algorithmic differentiation is a set of techniques to numerically evaluate the derivative of a function specified
by a computer program. AD exploits the fact that every computer program, no matter how complicated,
executes a sequence of elementary arithmetic operations (addition, subtraction, multiplication, division, etc.)
and elementary functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations,
derivatives of arbitrary order can be computed automatically, accurately to working precision, and using at
most a small constant factor more arithmetic operations than the original program.

References

Sebastian F. Walter and Lutz Lehmann 2013, “Algorithmic differentiation in Python with AlgoPy”, in Jour-
nal of Computational Science, vol 4, no 5, pp 334 - 344, http://www.sciencedirect.com/science/article/pii/
S1877750311001013

https://en.wikipedia.org/wiki/ Automatic_differentiation

Examples

>>> import numpy as np

>>> import numdifftools.nd_algopy as nda

>>> fun = lambda x: np.sum(x**2)

>>> df = nda.Gradient(fun, method='reverse')
>>> np.allclose(df([1,2,31), [2., 4., 6.])
True

#At [x,y] = [1,1], compute the numerical gradient #of the function sin(x-y) + y*exp(x)

5.1.

Numdifftools summary 55

http://www.sciencedirect.com/science/article/pii/S1877750311001013
http://www.sciencedirect.com/science/article/pii/S1877750311001013
https://en.wikipedia.org/wiki/Automatic_differentiation

Numdifftools Documentation, Release 0.9.40

>>> sin = np.sin; exp = np.exp

>>> z = lambda xy: sin(xy[0]-xy[1]) + xy[1]*exp(xy[0])
>>> dz = nda.Gradient(z)

>>> grad2 = dz([1, 1]1)

>>> np.allclose(grad2, [3.71828183, 1.71828183])
True

#At the global minimizer (1,1) of the Rosenbrock function, #compute the gradient. It should be essentially
Zero.

>>> rosen = lambda x : (1-x[0])**2 + 105.*(x[1]-x[0]**2)**2
>>> rd = nda.Gradient(rosen)

>>> grad3 = rd([1,1])

>>> np.allclose(grad3, [0., 0.])

True

Methods

_call__: callable with | x: array_like value at which function derivative is evaluated args: tuple
the following parame- | Arguments for function fun. kwds: dict Keyword arguments for function
ters: fun.

__init__ (fun, n=1, method='forward', full_output=False)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__ (page 56)(fun[, n, method, full_output]) Initialize self.

computational_graph(x, *args, **kwds)

Attributes

fun

5.1.6.3 numdifftools.nd_algopy.Jacobian

class Jacobian(fun, n=1, method='forward', full_output=False)

Calculate Jacobian with Algorithmic Differentiation method
Parameters
fun: function function of one array fun(x, *args, **kwds)
method: string, optional {‘forward’, ‘reverse’} defines method used in the approximation
Returns
jacob: array Jacobian

See also:

Derivative (page 112)

56

Chapter 5. Reference

Numdifftools Documentation, Release 0.9.40

Gradient (page 113)
Hessdiag (page 115)
Hessian (page 116)

Notes

Algorithmic differentiation is a set of techniques to numerically evaluate the derivative of a function specified
by a computer program. AD exploits the fact that every computer program, no matter how complicated,
executes a sequence of elementary arithmetic operations (addition, subtraction, multiplication, division, etc.)
and elementary functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations,
derivatives of arbitrary order can be computed automatically, accurately to working precision, and using at
most a small constant factor more arithmetic operations than the original program.

References

Sebastian F. Walter and Lutz Lehmann 2013, “Algorithmic differentiation in Python with AlgoPy”, in Jour-
nal of Computational Science, vol 4, no 5, pp 334 - 344, http://www.sciencedirect.com/science/article/pii/
S1877750311001013

https://en.wikipedia.org/wiki/ Automatic_differentiation

Examples

>>> import numpy as np
>>> import numdifftools.nd_algopy as nda

#(nonlinear least squares)

>>> xdata = np.arange(0,1,0.1)
>>> ydata = 1+2*np.exp(0.75*xdata)
>>> fun = lambda c: (c[0]+c[1]*np.exp(c[2]*xdata) - ydata)**2

Jfun = nda.Jacobian(fun) # Todo: This does not work Jfun([1,2,0.75]).T # should be numerically zero array([[
0.,0.,0.,0.,0.,0.,0.,0.,0.,0.],

[0,0.0,0.,0.,0.,0.,0.,0.,0.],[0.,0.,0.,0.,0.,0.,0.,0., 0.,0.]))

>>> Jfun2 = nda.Jacobian(fun, method='reverse')
>>> res = Jfun2([1,2,0.75]).T # should be numerically zero
>>> np.allclose(res,

(¢ ., 6., 6., 6., 6., 0., 0., 0., 0., 0.],
[e®., 0., 0., 0., 6., 0., 0., 0., 0., 0.1,
[o®., 0., 0., 0., 6., 0., 0., 0., 0., 0.1D

True

>>> f2 = lambda x : x[0]*x[1]*x[2]%*2

>>> Jfun2 = nda.Jacobian(£2)

>>> np.allclose(Jfun2([1., 2., 3.1), [[18., 9., 12.11)
True

>>> Jfun2l = nda.Jacobian(£f2, method='reverse')
>>> np.allclose(Jfun21([1., 2., 3.1), [[18., 9., 12.11)
True

5.1.

Numdifftools summary 57

http://www.sciencedirect.com/science/article/pii/S1877750311001013
http://www.sciencedirect.com/science/article/pii/S1877750311001013
https://en.wikipedia.org/wiki/Automatic_differentiation

Numdifftools Documentation, Release 0.9.40

>>> def fun3(x):
n = int(np.prod(np.shape(x[0])))
out = nda.algopy.zeros((2, n), dtype=x)
out[0] = x[0]*x[1]*x[2]**2
out[1] = x[0]*x[1]*x[2]
ce return out
>>> Jfun3 = nda.Jacobian(fun3)

>>> np.allclose(Jfun3([1., 2., 3.1), [[[18., 9., 12.11, [[6., 3., 2.111)
True
>>> np.allclose(Jfun3([4., 5., 6.1), [[[180., 144., 240.]11,

[[30., 24., 20.11D

True

>>> np.allclose(Jfun3(np.array([[1.,2.,3.], [4., 5., 6.]11).T),
[[[18., 0., 9., 0., 12., 0.1,
[6., 180., 0., 144., 0., 240.]11,
[[6., 0., 3., 0., 2., 0.1,
Pae [0., 30., 0., 24., 0., 20.11D)
True
Methods

_call__: callable with | x: array_like value at which function derivative is evaluated args: tuple
the following parame- | Arguments for function fun. kwds: dict Keyword arguments for function
ters: fun.

__init__ (fun, n=1, method='forward', full_output=False)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__ (page 58)(fun[, n, method, full_output]) Initialize self.
computational_graph(x, *args, **kwds)

Attributes

fun

5.1.6.4 numdifftools.nd_algopy.Hessdiag

class Hessdiag(f, method='forward', full_output=False)
Calculate Hessian diagonal with Algorithmic Differentiation method
Parameters
fun: function function of one array fun(x, *args, **kwds)

method: string, optional {‘forward’, ‘reverse’} defines method used in the approximation

Returns

58 Chapter 5. Reference

Numdifftools Documentation, Release 0.9.40

hessdiag [ndarray] Hessian diagonal array of partial second order derivatives.

See also:

Derivative (page 112)
Gradient (page 113)
Jacobian (page 117)
Hessian (page 116)

Notes

Algorithmic differentiation is a set of techniques to numerically evaluate the derivative of a function specified
by a computer program. AD exploits the fact that every computer program, no matter how complicated,
executes a sequence of elementary arithmetic operations (addition, subtraction, multiplication, division, etc.)
and elementary functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations,
derivatives of arbitrary order can be computed automatically, accurately to working precision, and using at
most a small constant factor more arithmetic operations than the original program.

References

Sebastian F. Walter and Lutz Lehmann 2013, “Algorithmic differentiation in Python with AlgoPy”, in Jour-
nal of Computational Science, vol 4, no 5, pp 334 - 344, http://www.sciencedirect.com/science/article/pii/
S1877750311001013

https://en.wikipedia.org/wiki/ Automatic_differentiation

Examples

>>> import numpy as np
>>> import numdifftools.nd_algopy as nda

Rosenbrock function, minimized at [1,1]

>>> rosen = lambda x : (1.-x[0])**2 + 105*(x[1]-x[0]**2)**2
>>> Hfun = nda.Hessdiag(rosen)

>>> h = Hfun([1, 1]) # h =[842, 210]

>>> np.allcloseCh, [842., 210.])

True

cos(x-y), at (0,0)

>>> COS = np.cos

>>> fun = lambda xy : cos(xy[0]-xy[1])
>>> Hfun2 = nda.Hessdiag(fun)

>>> h2 = Hfun2([0, 0]) # h2 = [-1, -1]
>>> np.allcloseCh2, [-1., -1.])

True

>>> Hfun3 = nda.Hessdiag(fun, method='reverse')
>>> h3 = Hfun3([0, 0]1) # h2 = [-1, -1];

>>> np.allclose(h3, [-1., -1.])

True

5.1.

Numdifftools summary 59

http://www.sciencedirect.com/science/article/pii/S1877750311001013
http://www.sciencedirect.com/science/article/pii/S1877750311001013
https://en.wikipedia.org/wiki/Automatic_differentiation

Numdifftools Documentation, Release 0.9.40

Methods

_call__: callable with | x: array_like value at which function derivative is evaluated args: tuple
the following parame- | Arguments for function fun. kwds: dict Keyword arguments for function
ters: fun.

__init__(f, method='forward', full_output=False)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__ (page 60)(f[, method, full_output]) Initialize self.

computational_graph(x, *args, **kwds)

Attributes

fun

5.1.6.5 numdifftools.nd_algopy.Hessian

class Hessian(f, method='forward’, full_output=False)

Calculate Hessian with Algorithmic Differentiation method
Parameters
fun: function function of one array fun(x, *args, **kwds)
method: string, optional {‘forward’, ‘reverse’} defines method used in the approximation
Returns
hess [ndarray] array of partial second derivatives, Hessian

See also:

Derivative (page 112)
Gradient (page 113)
Jacobian (page 117)
Hessdiag (page 115)

Notes

Algorithmic differentiation is a set of techniques to numerically evaluate the derivative of a function specified
by a computer program. AD exploits the fact that every computer program, no matter how complicated,
executes a sequence of elementary arithmetic operations (addition, subtraction, multiplication, division, etc.)
and elementary functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations,
derivatives of arbitrary order can be computed automatically, accurately to working precision, and using at
most a small constant factor more arithmetic operations than the original program.

60

Chapter 5. Reference

Numdifftools Documentation, Release 0.9.40

References

Sebastian F. Walter and Lutz Lehmann 2013, “Algorithmic differentiation in Python with AlgoPy”, in Jour-
nal of Computational Science, vol 4, no 5, pp 334 - 344, http://www.sciencedirect.com/science/article/pii/

S1877750311001013

https://en.wikipedia.org/wiki/Automatic_differentiation

Examples

>>> import numpy as np
>>> import numdifftools.nd_algopy as nda

Rosenbrock function, minimized at [1,1]

>>> rosen = lambda x :
>>> Hf = nda.Hessian(rosen)
>>> h = HE([1, 1]) # h =[842 -420; -420, 210];

(1.-x[0])**2 + 105*(x[1]-x[0]**

2)7’:7‘:2

>>> np.allcloseCh, [[842., -420.],
- [-420., 210.]11)
True
cos(x-y), at (0,0)
>>> COS = np.cos
>>> fun = lambda xy : cos(xy[0]-xy[1])
>>> Hfun2 = nda.Hessian(fun)
>>> h2 = Hfun2([0, 0]) # h2 = [-1 1; 1 -1]
>>> np.allcloseCh2, [[-1., 1.],
[1., -1.1D

True

>>> Hfun3 = nda.Hessian(fun, method='reverse')

>>> h3 = Hfun3([0, 0]) # h2 = [-1, 1; 1, -1];
>>> np.allclose(h3, [[-1., 1.],
(1., -1.ID
True
Methods
_call__: callable with | x: array_like value at which function derivative is evaluated args: tuple

the following parame-
ters:

fun.

Arguments for function fun. kwds: dict Keyword arguments for function

__init__(f, method='forward', full_output=False)
Initialize self. See help(type(self)) for accurate signature.

5.1.

Numdifftools summary

61

http://www.sciencedirect.com/science/article/pii/S1877750311001013
http://www.sciencedirect.com/science/article/pii/S1877750311001013
https://en.wikipedia.org/wiki/Automatic_differentiation

Numdifftools Documentation, Release 0.9.40

Methods

__init__ (page 61)(f[, method, full_output]) Initialize self.
computational_graph(x, *args, **kwds)

Attributes

fun

5.1.6.6 numdifftools.nd_algopy.directionaldiff
directionaldiff(f, x0, vec, **options)
Return directional derivative of a function of n variables
Parameters
fun: callable analytical function to differentiate.

x0: array vector location at which to differentiate fun. If x0 is an nxm array, then fun is
assumed to be a function of n*m variables.

vec: array vector defining the line along which to take the derivative. It should be the same
size as x0, but need not be a vector of unit length.

**gptions: optional arguments to pass on to Derivative.
Returns
dder: scalar estimate of the first derivative of fun in the specified direction.

See also:

Derivative (page 112)
Gradient (page 113)
Examples

At the global minimizer (1,1) of the Rosenbrock function, compute the directional derivative in the direction
(12]

>>> import numpy as np

>>> import numdifftools.nd_algopy as nda

>>> vec = np.r_[1, 2]

>>> rosen = lambda x: (1-x[0])**2 + 105*(x[1]-x[0]**2)**2
>>> dd = nda.directionaldiff(rosen, [1, 1], vec)

>>> np.allclose(dd, 0)

True

62 Chapter 5. Reference

Numdifftools Documentation, Release 0.9.40

5.1.7 numdifftools.nd_scipy module

Gradient (page 120)(fun[, step, method, order, Calculate Gradient with finite difference approxima-

bounds, ...]) tion
Jacobian (page 121)(fun[, step, method, order, Calculate Jacobian with finite difference approxima-
bounds, ...]) tion

5.1.7.1 numdifftools.nd_scipy.Gradient

class Gradient (fun, step=None, method='central’, order=2, bounds=(- inf, inf), sparsity=None)

Calculate Gradient with finite difference approximation
Parameters
fun [function] function of one array fun(x, *args, **kwds)

step [float, optional] Stepsize, if None, optimal stepsize is used, i.e., x * _EPS for
method=="complex™ x * _EPS**(1/2) for method=="forward> x * _EPS**(1/3) for
method=="central".

method [{‘central’, ‘complex’, ‘forward’}] defines the method used in the approximation.

See also:

Hessian, Jacobian (page 121)

Examples

>>> import numpy as np

>>> import numdifftools.nd_scipy as nd

>>> fun = lambda x: np.sum(x**2)

>>> dfun = nd.Gradient (fun)

>>> np.allclose(dfun([1,2,31), [2., 4., 6.]1)
True

At [x,y] = [1,1], compute the numerical gradient # of the function sin(x-y) + y*exp(x)

>>> sin = np.sin; exp = np.exp

>>> z = lambda xy: sin(xy[0]-xy[1]) + xy[1]*exp(xy[0])
>>> dz = nd.Gradient(z)

>>> grad2 = dz([1, 11)

>>> np.allclose(grad2, [3.71828183, 1.71828183])
True

At the global minimizer (1,1) of the Rosenbrock function, # compute the gradient. It should be essentially
ZEero.

>>> rosen = lambda x : (1-x[0])**2 + 105.*(x[1]-x[0]**2)**2
>>> rd = nd.Gradient(rosen)

>>> grad3 = rd([1,1])

>>> np.allclose(grad3, [0, 0], atol=1le-7)

True

__init__ (fun, step=None, method='central’, order=2, bounds=(- inf, inf), sparsity=None)
Initialize self. See help(type(self)) for accurate signature.

5.1.

Numdifftools summary 63

Numdifftools Documentation, Release 0.9.40

Methods

__init__ (page 63)(fun[, step, method, order, Initialize self.
bounds, ...])

5.1.7.2 numdifftools.nd_scipy.Jacobian

class Jacobian(fun, step=None, method='central’, order=2, bounds=(- inf, inf), sparsity=None)

Calculate Jacobian with finite difference approximation
Parameters
fun [function] function of one array fun(x, *args, **kwds)

step [float, optional] Stepsize, if None, optimal stepsize is used, i.e., x * _EPS for
method=="complex™ x * _EPS**(1/2) for method=="forward™ x * _EPS**(1/3) for
method=="central".

method [{‘central’, ‘complex’, ‘forward’}] defines the method used in the approximation.

Examples

>>> import numpy as np
>>> import numdifftools.nd_scipy as nd

#(nonlinear least squares)

>>> xdata = np.arange(0,1,0.1)

>>> ydata = 1+2*np.exp(0.75*xdata)

>>> fun = lambda c: (c[0]+c[1]*np.exp(c[2]*xdata) - ydata)**2
>>> np.allclose(fun([1, 2, 0.75]).shape, (10,))

True

>>> dfun = nd.Jacobian(fun)

>>> np.allclose(dfun([1, 2, 0.75]), np.zeros((10,3)))

True

>>> fun2 = lambda x : x[0]*x[1]*x[2]**2

>>> dfun2 = nd.Jacobian(fun2)

>>> np.allclose(dfun2([1.,2.,3.]), [[18., 9., 12.11)
True

>>> fun3 = lambda x : np.vstack((x[0]*x[1]*x[2]**2, x[0]1*x[1]*x[2]1))

TODO: The following does not work: der3 = nd.Jacobian(fun3)([1., 2., 3.]) np.allclose(der3, ... [[18., 9.,
12.], [6., 3., 2.]]) True np.allclose(nd.Jacobian(fun3)([4., 5., 6.]), ... [[180., 144., 240.], [30., 24., 20.]])
True

np.allclose(nd.Jacobian(fun3)(np.array([[1.,2.,3.], [4., 5., 6.]1]).T), ... [[[18.,180.], ... [9., 144.], ... [12,
240.01, ... [[6.,30.],... [3.,24.],... [2.,20.]]1]) True

__init__(fun, step=None, method='central’, order=2, bounds=(- inf, inf), sparsity=None)
Initialize self. See help(type(self)) for accurate signature.

64

Chapter 5. Reference

Numdifftools Documentation, Release 0.9.40

Methods

__init__ (page 64)(fun[, step, method, order, Initialize self.
bounds, ...])

5.1.8 numdifftools.nd_statsmodels module

Hessian (page 123)(fun[, step, method, order]) Calculate Hessian with finite difference approxima-
tion

Jacobian (page 123)(funl, step, method, order]) Calculate Jacobian with finite difference approxima-
tion

5.1.8.1 numdifftools.nd_statsmodels.Hessian
class Hessian(fun, step=None, method='central’, order=None)
Calculate Hessian with finite difference approximation
Parameters
fun [function] function of one array fun(x, *args, **kwds)

step [float, optional] Stepsize, if None, optimal stepsize is used, i.e., x * _EPS**(1/3) for
method=="forward", complex or central2 x * _EPS**(1/4) for method=="central".

method [{‘central’, ‘complex’, ‘forward’, ‘backward’ }] defines the method used in the ap-
proximation.

See also:

Jacobian (page 123), Gradient (page 122)

Examples

>>> import numpy as np
>>> import numdifftools.nd_statsmodels as nd

Rosenbrock function, minimized at [1,1]

>>> rosen = lambda x : (1.-x[0])**2 + 105*(x[1]-x[0]**2)**2
>>> Hfun = nd.Hessian(rosen)

>>> h = Hfun([1, 1])

>>> np.allcloseCh, [[842., -420.], [-420., 210.]11)

True

cos(x-y), at (0,0)

>>> COS = np.cos

>>> fun = lambda xy : cos(xy[0]-xy[1])

>>> Hfun2 = nd.Hessian(fun)

>>> h2 = Hfun2([0, 0])

>>> np.allcloseCh2, [[-1., 1.], [1., -1.11)
True

__init__(fun, step=None, method='central’, order=None)
Initialize self. See help(type(self)) for accurate signature.

5.1. Numdifftools summary 65

Numdifftools Documentation, Release 0.9.40

Methods

__init__ (page 65)(fun[, step, method, order]) Initialize self.

Attributes

method

n (page 123)

order

5.1.8.2 numdifftools.nd_statsmodels.Jacobian
class Jacobian(fun, step=None, method='central’, order=None)
Calculate Jacobian with finite difference approximation
Parameters
fun [function] function of one array fun(x, *args, **kwds)

step [float, optional] Stepsize, if None, optimal stepsize is used, i.e., x * _EPS for
method=="complex™ x * _EPS**(1/2) for method=="forward™ x * _EPS**(1/3) for
method=="central".

method [{‘central’, ‘complex’, ‘forward’, ‘backward’ }] defines the method used in the ap-
proximation.

Examples

>>> import numpy as np
>>> import numdifftools.nd_statsmodels as nd

#(nonlinear least squares)

>>> xdata = np.arange(0,1,0.1)

>>> ydata = 1+2*np.exp(0.75*xdata)

>>> fun = lambda c: (c[0]+c[1]*np.exp(c[2]*xdata) - ydata)**2
>>> np.allclose(fun([1, 2, 0.75]).shape, (10,))

True

>>> dfun = nd.Jacobian(fun)

>>> np.allclose(dfun([1, 2, 0.75]), np.zeros((10,3)))

True

>>> fun2 = lambda x : x[0]*x[1]*x[2]%*2

>>> dfun2 = nd.Jacobian(fun2)

>>> np.allclose(dfun2([1.,2.,3.]), [[18., 9., 12.11)
True

>>> fun3 = lambda x : np.vstack((x[0]*x[1]*x[2]**2, x[0]1*x[1]*x[2]))
>>> np.allclose(nd.Jacobian(fun3)([1., 2., 3.1), [[[18.]1, [9.]1, [12.1]1, [[6.]1,.
—[3.1, [2.11D

True

(continues on next page)

66 Chapter 5. Reference

Numdifftools Documentation, Release 0.9.40

(continued from previous page)

>>> np.allclose(nd.Jacobian(fun3) ([4., 5., 6.]1),
[[[180.], [144.]1, [240.11, [[30.]1, [24.]1, [20.]11D

True

>>> np.allclose(nd.Jacobian(fun3) (np.array([[1.,2.,3.], [4., 5., 6.]11).T),
[[[18., 180.],

[9., 144.1,

[12., 240.]]1,

[[6., 30.17,

[3., 24.7,

[2., 20.11D

True

__init__ (fun, step=None, method='central’, order=None)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__ (page 67)(fun[, step, method, order]) Initialize self.

Attributes

method

order

5.2 Numdifftools package details

5.2.1 numdifftools.tests package

5.2.1.1 numdifftools.tests.hamiltonian module

Created on Jun 25, 2016
@author: pab

class ClassicalHamiltonian
Bases: object!?

Hamiltonian
Parameters
n [scalar] number of ions in the chain
w [scalar] angular trap frequency
C [scalar] Coulomb constant times the electronic charge in SI units.

m [scalar] the mass of a single trapped ion in the chain

5.2. Numdifftools package details 67

https://docs.python.org/3.7/library/functions.html#object

Numdifftools Documentation, Release 0.9.40

initialposition()
Defines initial position as an estimate for the minimize process.

normal_modes (eigenvalues)
Return normal modes

Computed eigenvalues of the matrix Vx are of the form (normal_modes)**2*m.

potential (positionvector)
Return potential

Parameters
positionvector: 1-d array (vector) of length n positions of the n ions

run_hamiltonian(hessian, verbose=True)

5.2.1.2 numdifftools.tests.test_extrapolation module
class TestExtrapolation
Bases: object!®
setup_method()
test_dea3_on_trapz_sin()
test_dea_on_trapz_sin()
test_epsal()
test_richardson()
class TestRichardson
Bases: object!’

setup_method ()

test_order_step_combinations()

5.2.1.3 numdifftools.tests.test_fornberg module

class ExampleFunctions
Bases: object!®
static fun®(z)
static funl(z)

static funl0(z)

static funli(z)

15 https://docs.python.org/3.7/library/functions. html#object
16 hitps://docs.python.org/3.7/library/functions.html#object
17 https://docs.python.org/3.7/library/functions.html#object

68 Chapter 5. Reference

https://docs.python.org/3.7/library/functions.html#object
https://docs.python.org/3.7/library/functions.html#object
https://docs.python.org/3.7/library/functions.html#object

Numdifftools Documentation, Release 0.9.40

static funl2(z)

static fun13(z)

static funl4(z)

static fun2(z)

static fun3(z)

static fun4(z)

static fun5(z)

static fun6(z)

static fun7(z)

static fun8(z)

static fun9(z)
test_all_weights()
test_fd_derivative()
test_high_order_derivative() — None'’
test_low_order_de