Source code for numdifftools.nd_algopy

"""
Numdifftools.nd_algopy
======================
This module provide an easy to use interface to derivatives calculated with
AlgoPy. Algopy stands for Algorithmic Differentiation in Python.

The purpose of AlgoPy is the evaluation of higher-order derivatives in the
forward and reverse mode of Algorithmic Differentiation (AD) of functions that
are implemented as Python programs. Particular focus are functions that contain
numerical linear algebra functions as they often appear in statistically
motivated functions. The intended use of AlgoPy is for easy prototyping at
reasonable execution speeds. More precisely, for a typical program a
directional derivative takes order 10 times as much time as time as the
function evaluation. This is approximately also true for the gradient.


Algoritmic differentiation
==========================

Algorithmic differentiation (AD) is a set of techniques to numerically
evaluate the derivative of a function specified by a computer program. AD
exploits the fact that every computer program, no matter how complicated,
executes a sequence of elementary arithmetic operations (addition,
subtraction, multiplication, division, etc.) and elementary functions
(exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these
operations, derivatives of arbitrary order can be computed automatically,
accurately to working precision, and using at most a small constant factor
more arithmetic operations than the original program.

Algorithmic differentiation is not:

Symbolic differentiation, nor Numerical differentiation (the method of
finite differences). These classical methods run into problems:
symbolic differentiation leads to inefficient code (unless carefully done)
and faces the difficulty of converting a computer program into a single
expression, while numerical differentiation can introduce round-off errors
in the discretization process and cancellation. Both classical methods have
problems with calculating higher derivatives, where the complexity and
errors increase. Finally, both classical methods are slow at computing the
partial derivatives of a function with respect to many inputs, as is needed
for gradient-based optimization algorithms. Algoritmic differentiation
solves all of these problems.

References
----------
Sebastian F. Walter and Lutz Lehmann 2013,
"Algorithmic differentiation in Python with AlgoPy",
in Journal of Computational Science, vol 4, no 5, pp 334 - 344,
http://www.sciencedirect.com/science/article/pii/S1877750311001013

https://en.wikipedia.org/wiki/Automatic_differentiation

https://pythonhosted.org/algopy/index.html
"""
from __future__ import absolute_import, division

from collections import namedtuple

from scipy import special
import numpy as np
try:
    import algopy
    from algopy import UTPM
except ImportError:
    UTPM = algopy = None


EPS = np.finfo(float).eps

_cmn_doc = """
    Calculate %(derivative)s with Algorithmic Differentiation method

    Parameters
    ----------
    fun: function
        function of one array fun(x, `*args`, `**kwds`)%(extra_parameter)s
    method: string, optional {'forward', 'reverse'}
        defines method used in the approximation

    Methods
    -------
    __call__: callable with the following parameters:
        x: array_like
           value at which function derivative is evaluated
        args: tuple
            Arguments for function `fun`.
        kwds: dict
            Keyword arguments for function `fun`.
    %(returns)s
    Notes
    -----
    Algorithmic differentiation is a set of techniques to numerically
    evaluate the derivative of a function specified by a computer program.
    AD exploits the fact that every computer program, no matter how
    complicated, executes a sequence of elementary arithmetic operations
    (addition, subtraction, multiplication, division, etc.) and elementary
    functions (exp, log, sin, cos, etc.). By applying the chain rule
    repeatedly to these operations, derivatives of arbitrary order can be
    computed automatically, accurately to working precision, and using at
    most a small constant factor more arithmetic operations than the original
    program.
    %(extra_note)s
    References
    ----------
    Sebastian F. Walter and Lutz Lehmann 2013,
    "Algorithmic differentiation in Python with AlgoPy",
    in Journal of Computational Science, vol 4, no 5, pp 334 - 344,
    http://www.sciencedirect.com/science/article/pii/S1877750311001013

    https://en.wikipedia.org/wiki/Automatic_differentiation

    %(example)s
    %(see_also)s
    """


class _Derivative(object):

    """Base class"""

    info = namedtuple('info', ['error_estimate', 'final_step', 'index'])

    def __init__(self, fun, n=1, method='forward', full_output=False):
        self.fun = fun
        self.method = method
        self.n = n
        self.full_output = full_output

    @property
    def fun(self):
        return self._fun

    @fun.setter
    def fun(self, fun):
        self._fun = fun
        self._computational_graph = None

    def computational_graph(self, x, *args, **kwds):
        if self._computational_graph is None:
            # STEP 1: trace the function evaluation
            cg = algopy.CGraph()
            tmp = algopy.Function(x)

            y = self.fun(tmp, *args, **kwds)

            cg.trace_off()
            cg.independentFunctionList = [tmp]
            cg.dependentFunctionList = [y]
            self._computational_graph = cg
        return self._computational_graph

    def _get_function(self):
        if self.n == 0:
            return self.fun
        name = '_' + dict(backward='reverse').get(self.method, self.method)
        return getattr(self, name)

    def __call__(self, x, *args, **kwds):
        fun = self._get_function()
        x0 = np.asarray(x, dtype=float)
        df = fun(x0, *args, **kwds)
        if self.full_output:
            return df, self.info(np.maximum(10 * EPS * np.abs(df), EPS), EPS, 0)
        return df


[docs]class Derivative(_Derivative): __doc__ = _cmn_doc % dict( derivative='n-th derivative', extra_parameter=""" n: int, optional Order of the derivative.""", extra_note="", returns=""" Returns ------- der: ndarray array of derivatives """, example=""" Examples -------- # 1'st and 2'nd derivative of exp(x), at x == 1 >>> import numpy as np >>> import numdifftools.nd_algopy as nda >>> fd = nda.Derivative(np.exp) # 1'st derivative >>> np.allclose(fd(1), 2.718281828459045) True >>> fd5 = nda.Derivative(np.exp, n=5) # 5'th derivative >>> np.allclose(fd5(1), 2.718281828459045) True # 1'st derivative of x^3+x^4, at x = [0,1] >>> fun = lambda x: x**3 + x**4 >>> fd3 = nda.Derivative(fun) >>> np.allclose(fd3([0,1]), [ 0., 7.]) True """, see_also=""" See also -------- Gradient, Hessdiag, Hessian, Jacobian """) def _forward(self, x, *args, **kwds): x0 = np.asarray(x) shape = x0.shape P = 1 x = UTPM(np.zeros((self.n + 1, P) + shape)) x.data[0, 0] = x0 x.data[1, 0] = 1 z = self.fun(x, *args, **kwds) y = UTPM.as_utpm(z) return y.data[self.n, 0] * special.factorial(self.n) def _reverse(self, x, *args, **kwds): if self.n != 1: raise NotImplementedError('Derivative reverse not implemented' ' for n>1') c_graph = self.computational_graph(np.asarray(1), *args, **kwds) shape0 = x.shape y = np.array([c_graph.gradient(xi) for xi in x.ravel()]) return y.reshape(shape0)
[docs]class Gradient(_Derivative): __doc__ = _cmn_doc % dict( derivative='Gradient', extra_parameter="", extra_note="", returns=""" Returns ------- grad: array gradient """, example=""" Examples -------- >>> import numpy as np >>> import numdifftools.nd_algopy as nda >>> fun = lambda x: np.sum(x**2) >>> df = nda.Gradient(fun, method='reverse') >>> np.allclose(df([1,2,3]), [ 2., 4., 6.]) True #At [x,y] = [1,1], compute the numerical gradient #of the function sin(x-y) + y*exp(x) >>> sin = np.sin; exp = np.exp >>> z = lambda xy: sin(xy[0]-xy[1]) + xy[1]*exp(xy[0]) >>> dz = nda.Gradient(z) >>> grad2 = dz([1, 1]) >>> np.allclose(grad2, [ 3.71828183, 1.71828183]) True #At the global minimizer (1,1) of the Rosenbrock function, #compute the gradient. It should be essentially zero. >>> rosen = lambda x : (1-x[0])**2 + 105.*(x[1]-x[0]**2)**2 >>> rd = nda.Gradient(rosen) >>> grad3 = rd([1,1]) >>> np.allclose(grad3, [ 0., 0.]) True """, see_also=""" See also -------- Derivative Jacobian, Hessdiag, Hessian, """) def _forward(self, x, *args, **kwds): # forward mode without building the computational graph tmp = UTPM.init_jacobian(x) y = self.fun(tmp, *args, **kwds) return UTPM.extract_jacobian(y) def _reverse(self, x, *args, **kwds): c_graph = self.computational_graph(x, *args, **kwds) return c_graph.gradient(x)
[docs]class Jacobian(Gradient): __doc__ = _cmn_doc % dict( derivative='Jacobian', extra_parameter="", extra_note="", returns=""" Returns ------- jacob: array Jacobian """, example=""" Examples -------- >>> import numpy as np >>> import numdifftools.nd_algopy as nda #(nonlinear least squares) >>> xdata = np.arange(0,1,0.1) >>> ydata = 1+2*np.exp(0.75*xdata) >>> fun = lambda c: (c[0]+c[1]*np.exp(c[2]*xdata) - ydata)**2 Jfun = nda.Jacobian(fun) # Todo: This does not work Jfun([1,2,0.75]).T # should be numerically zero array([[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]) >>> Jfun2 = nda.Jacobian(fun, method='reverse') >>> res = Jfun2([1,2,0.75]).T # should be numerically zero >>> np.allclose(res, ... [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], ... [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], ... [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]) True >>> f2 = lambda x : x[0]*x[1]*x[2]**2 >>> Jfun2 = nda.Jacobian(f2) >>> np.allclose(Jfun2([1., 2., 3.]), [[ 18., 9., 12.]]) True >>> Jfun21 = nda.Jacobian(f2, method='reverse') >>> np.allclose(Jfun21([1., 2., 3.]), [[ 18., 9., 12.]]) True >>> def fun3(x): ... n = int(np.prod(np.shape(x[0]))) ... out = nda.algopy.zeros((2, n), dtype=x) ... out[0] = x[0]*x[1]*x[2]**2 ... out[1] = x[0]*x[1]*x[2] ... return out >>> Jfun3 = nda.Jacobian(fun3) >>> np.allclose(Jfun3([1., 2., 3.]), [[[18., 9., 12.]], [[6., 3., 2.]]]) True >>> np.allclose(Jfun3([4., 5., 6.]), [[[180., 144., 240.]], ... [[30., 24., 20.]]]) True >>> np.allclose(Jfun3(np.array([[1.,2.,3.], [4., 5., 6.]]).T), ... [[[18., 0., 9., 0., 12., 0.], ... [0., 180., 0., 144., 0., 240.]], ... [[6., 0., 3., 0., 2., 0.], ... [0., 30., 0., 24., 0., 20.]]]) True """, see_also=""" See also -------- Derivative Gradient, Hessdiag, Hessian, """) def _forward(self, x, *args, **kwds): return np.atleast_2d(super(Jacobian, self)._forward(x, *args, **kwds)) def _reverse(self, x, *args, **kwds): x = np.atleast_1d(x) c_graph = self.computational_graph(x, *args, **kwds) return c_graph.jacobian(x)
[docs]class Hessian(_Derivative): __doc__ = _cmn_doc % dict( derivative='Hessian', extra_parameter="", returns=""" Returns ------- hess : ndarray array of partial second derivatives, Hessian """, extra_note='', example=""" Examples -------- >>> import numpy as np >>> import numdifftools.nd_algopy as nda # Rosenbrock function, minimized at [1,1] >>> rosen = lambda x : (1.-x[0])**2 + 105*(x[1]-x[0]**2)**2 >>> Hf = nda.Hessian(rosen) >>> h = Hf([1, 1]) # h =[ 842 -420; -420, 210]; >>> np.allclose(h, [[ 842., -420.], ... [-420., 210.]]) True # cos(x-y), at (0,0) >>> cos = np.cos >>> fun = lambda xy : cos(xy[0]-xy[1]) >>> Hfun2 = nda.Hessian(fun) >>> h2 = Hfun2([0, 0]) # h2 = [-1 1; 1 -1] >>> np.allclose(h2, [[-1., 1.], ... [ 1., -1.]]) True >>> Hfun3 = nda.Hessian(fun, method='reverse') >>> h3 = Hfun3([0, 0]) # h2 = [-1, 1; 1, -1]; >>> np.allclose(h3, [[-1., 1.], ... [ 1., -1.]]) True """, see_also=""" See also -------- Derivative Gradient, Jacobian, Hessdiag, """)
[docs] def __init__(self, f, method='forward', full_output=False): super(Hessian, self).__init__(f, n=2, method=method, full_output=full_output)
def _forward(self, x, *args, **kwds): x = np.atleast_1d(x) tmp = UTPM.init_hessian(x) y = self.fun(tmp, *args, **kwds) return UTPM.extract_hessian(len(x), y) def _reverse(self, x, *args, **kwds): x = np.atleast_1d(np.asarray(x, dtype=float)) c_graph = self.computational_graph(x, *args, **kwds) return c_graph.hessian(x)
[docs]class Hessdiag(Hessian): __doc__ = _cmn_doc % dict( derivative='Hessian diagonal', extra_parameter="", returns=""" Returns ------- hessdiag : ndarray Hessian diagonal array of partial second order derivatives. """, extra_note='', example=""" Examples -------- >>> import numpy as np >>> import numdifftools.nd_algopy as nda # Rosenbrock function, minimized at [1,1] >>> rosen = lambda x : (1.-x[0])**2 + 105*(x[1]-x[0]**2)**2 >>> Hfun = nda.Hessdiag(rosen) >>> h = Hfun([1, 1]) # h =[ 842, 210] >>> np.allclose(h, [ 842., 210.]) True # cos(x-y), at (0,0) >>> cos = np.cos >>> fun = lambda xy : cos(xy[0]-xy[1]) >>> Hfun2 = nda.Hessdiag(fun) >>> h2 = Hfun2([0, 0]) # h2 = [-1, -1] >>> np.allclose(h2, [-1., -1.]) True >>> Hfun3 = nda.Hessdiag(fun, method='reverse') >>> h3 = Hfun3([0, 0]) # h2 = [-1, -1]; >>> np.allclose(h3, [-1., -1.]) True """, see_also=""" See also -------- Derivative Gradient, Jacobian, Hessian, """) def _forward(self, x, *args, **kwds): d, n = 2 + 1, x.size p = n y = UTPM(np.zeros((d, p, n))) y.data[0, :] = x.ravel() y.data[1, :] = np.eye(n) z0 = self.fun(y, *args, **kwds) z = UTPM.as_utpm(z0) H = z.data[2, ...] * 2 return H def _reverse(self, x, *args, **kwds): return np.diag(super(Hessdiag, self)._reverse(x, *args, **kwds))
[docs]def directionaldiff(f, x0, vec, **options): """ Return directional derivative of a function of n variables Parameters ---------- fun: callable analytical function to differentiate. x0: array vector location at which to differentiate fun. If x0 is an nxm array, then fun is assumed to be a function of n*m variables. vec: array vector defining the line along which to take the derivative. It should be the same size as x0, but need not be a vector of unit length. **options: optional arguments to pass on to Derivative. Returns ------- dder: scalar estimate of the first derivative of fun in the specified direction. Examples -------- At the global minimizer (1,1) of the Rosenbrock function, compute the directional derivative in the direction [1 2] >>> import numpy as np >>> import numdifftools.nd_algopy as nda >>> vec = np.r_[1, 2] >>> rosen = lambda x: (1-x[0])**2 + 105*(x[1]-x[0]**2)**2 >>> dd = nda.directionaldiff(rosen, [1, 1], vec) >>> np.allclose(dd, 0) True See also -------- Derivative, Gradient """ x0 = np.asarray(x0) vec = np.asarray(vec) if x0.size != vec.size: raise ValueError('vec and x0 must be the same shapes') vec = np.reshape(vec / np.linalg.norm(vec.ravel()), x0.shape) return Derivative(lambda t: f(x0 + t * vec), **options)(0)
[docs]class Taylor(object): """ Return Taylor coefficients of function using algorithmic differentiation Parameters ---------- fun: callable function to differentiate z0: real or complex array at which to evaluate the derivatives n: scalar integer, default 1 Number of taylor coefficents to compute. Returns ------- coefs: ndarray array of taylor coefficents Examples -------- Compute the first 6 taylor coefficients 1 + 2*z + 3*z**2 expanded round z0 = 0: >>> import numpy as np >>> import numdifftools.nd_algopy as nda >>> c = nda.Taylor(lambda x: 1+2*x+3*x**2, n=6)(z0=0) >>> np.allclose(c, [1, 2, 3, 0, 0, 0]) True """ def __init__(self, fun, n=1): self.fun = fun self.n = n def __call__(self, z0=0): z = np.atleast_1d(z0).ravel() x = UTPM(np.zeros((self.n, 1, z.size), dtype=z.dtype)) x.data[0, 0, :] = z x.data[1, 0, :] = 1 y = self.fun(x) coefs = np.squeeze(y.data) return coefs
if __name__ == '__main__': from numdifftools.testing import test_docstrings test_docstrings()