Source code for numdifftools.limits

"""
Created on 27. aug. 2015

@author: pab
Author: John D'Errico
e-mail: woodchips@rochester.rr.com
Release: 1.0
Release date: 5/23/2008

"""
from __future__ import absolute_import, division, print_function
from collections import namedtuple
from functools import partial
import warnings
import numpy as np
from numdifftools.step_generators import MinStepGenerator
from numdifftools.extrapolation import Richardson, dea3


def _assert(cond, msg):
    if not cond:
        raise ValueError(msg)


[docs]class CStepGenerator(MinStepGenerator): """ Generates a sequence of steps where steps = base_step * step_nom * (exp(1j*dtheta) * step_ratio) ** (i + offset) for i = 0, 1, ..., num_steps-1 Parameters ---------- base_step : float, array-like, default None Defines the minimum step, if None, the value is set to EPS**(1/scale) step_ratio : real scalar, optional, default 4.0 Ratio between sequential steps generated. num_steps : scalar integer, optional, defines number of steps generated. If None the value is 2 * int(round(16.0/log(abs(step_ratio)))) + 1 step_nom : default maximum(log(exp(1)+|x|), 1) Nominal step where x is supplied at runtime through the __call__ method. offset : real scalar, optional, default 0 offset to the base step use_exact_steps : boolean, default True. If true make sure exact steps are generated. scale : real scalar, default 1.2 scale used in base step. path : 'radial' or 'spiral' Specifies the type of path to take the limit along. Default 'radial'. dtheta: real scalar, default pi/8 If the path is 'spiral' it will follow an exponential spiral into the limit, with angular steps at dtheta radians. """
[docs] def __init__(self, base_step=None, step_ratio=4.0, num_steps=None, step_nom=None, offset=0, scale=1.2, **options): self.path = options.pop('path', 'radial') self.dtheta = options.pop('dtheta', np.pi / 8) super(CStepGenerator, self).__init__(base_step=base_step, step_ratio=step_ratio, num_steps=num_steps, step_nom=step_nom, offset=offset, scale=scale, **options) self._check_path()
def _check_path(self): _assert(self.path in ['spiral', 'radial'], 'Invalid Path: {}'.format(str(self.path))) @property def step_ratio(self): """Ratio between sequential steps generated.""" dtheta = self.dtheta _step_ratio = float(self._step_ratio) # radial path if dtheta != 0: _step_ratio = np.exp(1j * dtheta) * _step_ratio # a spiral path return _step_ratio @step_ratio.setter def step_ratio(self, step_ratio): self._step_ratio = step_ratio @property def dtheta(self): """Angular steps in radians used for the exponential spiral path.""" radial_path = self.path[0].lower() == 'r' return 0 if radial_path else self._dtheta @dtheta.setter def dtheta(self, dtheta): self._dtheta = dtheta @property def num_steps(self): """The number of steps generated""" if self._num_steps is None: return 2 * int(np.round(16.0 / np.log(np.abs(self.step_ratio)))) + 1 return self._num_steps @num_steps.setter def num_steps(self, num_steps): self._num_steps = num_steps
class _Limit(object): """Common methods and member variables""" info = namedtuple('info', ['error_estimate', 'final_step', 'index']) def __init__(self, step=None, **options): self.step = step, options self.richardson = Richardson(step_ratio=1.6, step=1, order=1, num_terms=2) @staticmethod def _parse_step_options(step): options = {} if isinstance(step, tuple) and isinstance(step[-1], dict): step, options = step return step, options @staticmethod def _step_generator(step, options): if hasattr(step, '__call__'): return step step_nom = None if step is None else 1 return CStepGenerator(base_step=step, step_nom=step_nom, **options) @property def step(self): """The step spacing(s) used in the approximation""" return self._step @step.setter def step(self, step_options): step, options = self._parse_step_options(step_options) self._step = self._step_generator(step, options) @staticmethod def _get_arg_min(errors): shape = errors.shape try: arg_mins = np.nanargmin(errors, axis=0) min_errors = np.nanmin(errors, axis=0) except ValueError as msg: warnings.warn(str(msg)) return np.arange(shape[1]) for i, min_error in enumerate(min_errors): idx = np.flatnonzero(errors[:, i] == min_error) arg_mins[i] = idx[idx.size // 2] return np.ravel_multi_index((arg_mins, np.arange(shape[1])), shape) @staticmethod def _add_error_to_outliers(der, trim_fact=10): """ discard any estimate that differs wildly from the median of all estimates. A factor of 10 to 1 in either direction is probably wild enough here. The actual trimming factor is defined as a parameter. """ try: if np.any(np.isnan(der)): p25, median, p75 = np.nanpercentile(der, [25,50, 75], axis=0) else: p25, median, p75 = np.percentile(der, [25,50, 75], axis=0) iqr = np.abs(p75 - p25) except ValueError as msg: warnings.warn(str(msg)) return 0 * der a_median = np.abs(median) outliers = (((abs(der) < (a_median / trim_fact)) + (abs(der) > (a_median * trim_fact))) * (a_median > 1e-8) + ((der < p25 - 1.5 * iqr) + (p75 + 1.5 * iqr < der))) errors = outliers * np.abs(der - median) return errors @staticmethod def _get_best_estimate(der, errors, steps, shape): errors += _Limit._add_error_to_outliers(der) idx = _Limit._get_arg_min(errors) final_step = steps.flat[idx].reshape(shape) err = errors.flat[idx].reshape(shape) return der.flat[idx].reshape(shape), _Limit.info(err, final_step, idx) @staticmethod def _wynn_extrapolate(der, steps): der, errors = dea3(der[0:-2], der[1:-1], der[2:], symmetric=False) return der, errors, steps[2:] def _extrapolate(self, results, steps, shape): # if len(results) > 2: # der0, errors0, steps0 = self._wynn_extrapolate(results, steps) # if len(der0) > 0: # der2, errors2, steps2 = self._wynn_extrapolate(der0, steps0) # else: der1, errors1, steps = self.richardson(results, steps) if len(der1) > 2: der1, errors1, steps = self._wynn_extrapolate(der1, steps) der, info = self._get_best_estimate(der1, errors1, steps, shape) return der, info @staticmethod def _vstack(sequence, steps): original_shape = np.shape(sequence[0]) f_del = np.vstack([np.ravel(r) for r in sequence]) one = np.ones(original_shape) h = np.vstack([np.ravel(one * step) for step in steps]) _assert(f_del.size == h.size, 'fun did not return data of correct ' 'size (it must be vectorized)') return f_del, h, original_shape
[docs]class Limit(_Limit): """ Compute limit of a function at a given point Parameters ---------- fun : callable function fun(z, `*args`, `**kwds`) to compute the limit for z->z0. The function, fun, is assumed to return a result of the same shape and size as its input, `z`. step: float, complex, array-like or StepGenerator object, optional Defines the spacing used in the approximation. Default is CStepGenerator(base_step=step, **options) method : {'above', 'below'} defines if the limit is taken from `above` or `below` order: positive scalar integer, optional. defines the order of approximation used to find the specified limit. The order must be member of [1 2 3 4 5 6 7 8]. 4 is a good compromise. full_output: bool If true return additional info. options: options to pass on to CStepGenerator Returns ------- limit_fz: array like estimated limit of f(z) as z --> z0 info: Only given if full_output is True and contains the following: error estimate: ndarray 95 % uncertainty estimate around the limit, such that abs(limit_fz - lim z->z0 f(z)) < error_estimate final_step: ndarray final step used in approximation Notes ----- `Limit` computes the limit of a given function at a specified point, z0. When the function is evaluable at the point in question, this is a simple task. But when the function cannot be evaluated at that location due to a singularity, you may need a tool to compute the limit. `Limit` does this, as well as produce an uncertainty estimate in the final result. The methods used by `Limit` are Richardson extrapolation in a combination with Wynn's epsilon algorithm which also yield an error estimate. The user can specify the method order, as well as the path into z0. z0 may be real or complex. `Limit` uses a proportionally cascaded series of function evaluations, moving away from your point of evaluation along a path along the real line (or in the complex plane for complex z0 or step.) The `step_ratio` is the ratio used between sequential steps. The sign of step allows you to specify a limit from above or below. Negative values of step will cause the limit to be taken approaching z0 from below. A smaller `step_ratio` means that `Limit` will take more function evaluations to evaluate the limit, but the result will potentially be less accurate. The `step_ratio` MUST be a scalar larger than 1. A value in the range [2,100] is recommended. 4 seems a good compromise. Examples -------- Compute the limit of sin(x)./x, at x == 0. The limit is 1. >>> import numpy as np >>> from numdifftools.limits import Limit >>> def f(x): return np.sin(x)/x >>> lim_f0, err = Limit(f, full_output=True)(0) >>> np.allclose(lim_f0, 1) True >>> np.allclose(err.error_estimate, 1.77249444610966e-15) True Compute the derivative of cos(x) at x == pi/2. It should be -1. The limit will be taken as a function of the differential parameter, dx. >>> x0 = np.pi/2; >>> def g(x): return (np.cos(x0+x)-np.cos(x0))/x >>> lim_g0, err = Limit(g, full_output=True)(0) >>> np.allclose(lim_g0, -1) True >>> err.error_estimate < 1e-14 True Compute the residue at a first order pole at z = 0 The function 1./(1-exp(2*z)) has a pole at z == 0. The residue is given by the limit of z*fun(z) as z --> 0. Here, that residue should be -0.5. >>> def h(z): return -z/(np.expm1(2*z)) >>> lim_h0, err = Limit(h, full_output=True)(0) >>> np.allclose(lim_h0, -0.5) True >>> err.error_estimate < 1e-14 True Compute the residue of function 1./sin(z)**2 at z = 0. This pole is of second order thus the residue is given by the limit of z**2*fun(z) as z --> 0. >>> def g(z): return z**2/(np.sin(z)**2) >>> lim_gpi, err = Limit(g, full_output=True)(0) >>> np.allclose(lim_gpi, 1) True >>> err.error_estimate < 1e-14 True A more difficult limit is one where there is significant subtractive cancellation at the limit point. In the following example, the cancellation is second order. The true limit should be 0.5. >>> def k(x): return (x*np.exp(x)-np.expm1(x))/x**2 >>> lim_k0,err = Limit(k, full_output=True)(0) >>> np.allclose(lim_k0, 0.5) True >>> err.error_estimate < 1.0e-8 True >>> def h(x): return (x-np.sin(x))/x**3 >>> lim_h0, err = Limit(h, full_output=True)(0) >>> np.allclose(lim_h0, 1./6) True >>> err.error_estimate < 1e-8 True """
[docs] def __init__(self, fun, step=None, method='above', order=4, full_output=False, **options): super(Limit, self).__init__(step=step, **options) self.fun = fun self.method = method self.order = order self.full_output = full_output
def _fun(self, z, d_z, args, kwds): return self.fun(z + d_z, *args, **kwds) def _get_steps(self, x_i): return list(self.step(x_i)) # pylint: disable=not-callable def _set_richardson_rule(self, step_ratio, num_terms=2): self.richardson = Richardson(step_ratio=step_ratio, step=1, order=1, num_terms=num_terms) def _lim(self, f, z): sign = dict(forward=1, above=1, backward=-1, below=-1)[self.method] steps = [sign * step for step in self.step(z)] # pylint: disable=not-callable # pylint: disable=no-member self._set_richardson_rule(self.step.step_ratio, self.order + 1) sequence = [f(z, h) for h in steps] results = self._vstack(sequence, steps) lim_fz, info = self._extrapolate(*results) return lim_fz, info
[docs] def limit(self, x, *args, **kwds): """Return lim f(z) as z-> x""" z = np.asarray(x) f = partial(self._fun, args=args, kwds=kwds) f_z, info = self._lim(f, z) if self.full_output: return f_z, info return f_z
def _call_lim(self, f_z, z, f): err = np.zeros_like(f_z, dtype=float) final_step = np.zeros_like(f_z) index = np.zeros_like(f_z, dtype=int) k = np.flatnonzero(np.isnan(f_z)) if k.size > 0: lim_fz, info1 = self._lim(f, z.flat[k]) zero = np.zeros(1, dtype=np.result_type(lim_fz)) f_z = np.where(np.isnan(f_z), zero, f_z) np.put(f_z, k, lim_fz) if self.full_output: final_step = np.where(np.isnan(f_z), zero, final_step) np.put(final_step, k, info1.final_step) np.put(index, k, info1.index) np.put(err, k, info1.error_estimate) return f_z, self.info(err, final_step, index) def __call__(self, x, *args, **kwds): z = np.asarray(x) f = partial(self._fun, args=args, kwds=kwds) with np.errstate(divide='ignore', invalid='ignore'): f_z = f(z, 0) f_z, info = self._call_lim(f_z, z, f) if self.full_output: return f_z, info return f_z
[docs]class Residue(Limit): """ Compute residue of a function at a given point Parameters ---------- fun : callable function fun(z, `*args`, `**kwds`) to compute the Residue at z=z0. The function, fun, is assumed to return a result of the same shape and size as its input, `z`. step: float, complex, array-like or StepGenerator object, optional Defines the spacing used in the approximation. Default is CStepGenerator(base_step=step, **options) method : {'above', 'below'} defines if the limit is taken from `above` or `below` order: positive scalar integer, optional. defines the order of approximation used to find the specified limit. The order must be member of [1 2 3 4 5 6 7 8]. 4 is a good compromise. pole_order : scalar integer specifies the order of the pole at z0. full_output: bool If true return additional info. options: options to pass on to CStepGenerator Returns ------- res_fz: array like estimated residue, i.e., limit of f(z)*(z-z0)**pole_order as z --> z0 When the residue is estimated as approximately zero, the wrong order pole may have been specified. info: namedtuple, Only given if full_output is True and contains the following: error estimate: ndarray 95 % uncertainty estimate around the residue, such that abs(res_fz - lim z->z0 f(z)*(z-z0)**pole_order) < error_estimate Large uncertainties here suggest that the wrong order pole was specified for f(z0). final_step: ndarray final step used in approximation Notes ----- Residue computes the residue of a given function at a simple first order pole, or at a second order pole. The methods used by residue are polynomial extrapolants, which also yield an error estimate. The user can specify the method order, as well as the order of the pole. z0 - scalar point at which to compute the residue. z0 may be real or complex. See the document DERIVEST.pdf for more explanation of the algorithms behind the parameters of Residue. In most cases, the user should never need to specify anything other than possibly the PoleOrder. Examples -------- A first order pole at z = 0 >>> import numpy as np >>> from numdifftools.limits import Residue >>> def f(z): return -1./(np.expm1(2*z)) >>> res_f, info = Residue(f, full_output=True)(0) >>> np.allclose(res_f, -0.5) True >>> info.error_estimate < 1e-14 True A second order pole around z = 0 and z = pi >>> def h(z): return 1.0/np.sin(z)**2 >>> res_h, info = Residue(h, full_output=True, pole_order=2)([0, np.pi]) >>> np.allclose(res_h, 1) True >>> (info.error_estimate < 1e-10).all() True """
[docs] def __init__(self, f, step=None, method='above', order=None, pole_order=1, full_output=False, **options): if order is None: # MethodOrder will always = pole_order + 2 order = pole_order + 2 _assert(pole_order < order, 'order must be at least pole_order+1.') self.pole_order = pole_order super(Residue, self).__init__(f, step=step, method=method, order=order, full_output=full_output, **options)
def _fun(self, z, d_z, args, kwds): return self.fun(z + d_z, *args, **kwds) * (d_z ** self.pole_order) def __call__(self, x, *args, **kwds): return self.limit(x, *args, **kwds)
if __name__ == '__main__': from numdifftools.testing import test_docstrings test_docstrings(__file__)